LBYCH63, EA 2, Group # 6 Experiment #8: Aldehydes and Ketones Ong Hian Huy, Tiffany Joy Sir Glenn Kelly U. Tan November 11, 2014 November 25, 2014 Abstract Aldehydes and ketones are two similar functional groups containing the carbonyl group. In this experiment, the main objectives are to be able to do qualitative tests on the samples, to be able to write the respective correct chemical reactions for each sample on each test, and to be able to differentiate aldehydes and ketones from one another and from other compounds. The tests were performed by mixing the respective reagents or compounds to each of the samples and then the mixture was observed for a reaction. The oxidation test, and 2,4-DNPJ test confirms that formaldehyde and benzaldehyde …show more content…
Four drops of acetone was then placed inside and the test tube was then shaken thoroughly. The procedure was then repeated to the formaldehyde, cyclohexanone, and benzaldehyde. To the acetone and formaldehyde test tubes, 3 drops of 6M sodium hydroxide was placed since no discoloration was observed after shaking the test tube. It was observed that the acetone turned purple to green to yellow to brown yellow after the sodium hydroxide was mixed with it while the formaldehyde turned yellow brown after the sodium hydroxide was added which indicated a positive result. The cyclohexanone produce red-orange precipitate while the benzaldehyde produced yellow …show more content…
Two drops of iodine- potassium was then added to the mixture. The procedure was repeated with the rest of the samples and isopropyl with varying drops of sodium hydroxide. Eight drops of sodium hydroxide was added to formaldehyde, 9 drops to cyclohexanone, 15 drops to benzaldehyde, and 7 drops to isopropyl. It was observed that both cyclohexanone and benzaldehyde formed a yellow layer that lasted only for a few seconds before disappearing completely while the formaldehyde mixture produce a yellow precipitate. Both acetone and isopropyl mixtures were heated since no precipitate was observed. It was observed that after heating both acetone and isopopyl turned into a cloudy yellow indicating the presence of
Next, about 10 mL of both solutions, Red 40 and Blue 1, were added to a small beaker. The concentration of the stock solution were recorded, 52.1 ppm for Red 40 and 16.6 ppm for Blue 1. Then, using the volumetric pipette, 5 mL of each solution was transferred into a 10 mL volumetric flask, labelled either R1 or B1. Deionized water was added into the flask using a pipette until the solution level reached a line which indicated 10 mL. A cap for the flask was inserted and the flask was invented a few times to completely mix the solution. Then, the volumetric pipette was rinsed with fresh deionized water and
This aqueous solution was then heated until all the dichloromethane evaporated off. An error could have occurred at this point in the experiment if the hot plate was too hot. If the hot plate was set above the boiling point of the ketone, the ketone could have evaporated of along with the dichloromethane. This would result in a lower percent yield of the ketone. To prevent this from happening, the hot plate should not exceed 130˚C, so no matter what ketone was isolated, it would not evaporated off.
Tyler White CHEM151LL 32658 04/01/2018 Different Types Chemical Reaction Types and Equations Purpose: The purpose of this lab experiment is to examine different types of chemical reactions such as Decomposition reaction, Synthesis reactions, Combustion reactions, and different Chemical equations. The experiments were conducted online using Late Nite Labs. Materials: Because the experiments were conducted online there wasn’t any physical use of materials, only digital ones, for these labs to be performed. Only the registration for the website was needed to perform these online labs, as well as a desktop computer.
The goal of experiment four was to use sodium dichromate to oxidize borneol to camphor. To purify the camphor use sublimation, then reduce camphor to isomeric alcohol isoborneol with sodium borohydride. Use the 1H NMR to determine the ratio of borneol to isoborneol in the final product. The experiment was carried out by using sodium dichromate to oxidize a borneol solution that was made with borneol and ethyl acetate. Once the reaction was complete the mixture was transferred into a separatory funnel where the ether and aqueous layers were separated and the aqueous layer was then extracted with two portions of ether.
Chem 51LB Report Ngoc Tran - Student ID # 72048507 The purpose of this lab is to examine the composition of three components of gas products of elimination reaction under acidic condition by conducting the dehydration of primary and secondary alcohol, and under basic condition by conducting the base-induced dehydrobromination of 1-bromobutane and 2-bromobutane. Then gas chromatography is used to analyze the composition of the product mixtures. Gas chromatography (mobile phase) is used to analyze the composition of three components of the gas products. A syringe needle with gas product is injected into the machine, and the component is eluted and the composition is related to the column or the peaks.
The dehydration of 2-methylcyclohexanol takes place at the bottom of the Hickman still. As the Hickman still heats up within the sand bath, the products evaporate and travel higher up in the still where they condense into a liquid and fall within the collection ring, thus separating the product from the remaining water. Drierite (CaSO4) is also added as a drying agent to absorb any leftover water within the product. The purity of the product will then be analyzed with infrared spectroscopy, paying attention to OH peak if it is present. Chemical Reactions: Data and Observations: Material Volume Mol.
Benzyne Formation and the Diels-Alder Reaction Preparation of 1,2,3,4 Tetraphenylnaphthalene Aubree Edwards Purpose: 1,2,3,4-tetraphenylnaphthalene is prepared by first producing benzyne via the unstable diazonium salt. Then tetraphenylcyclopentadienone and benzyne undergo a diels-alder reaction to create 1,2,3,4-tetraphenylnaphthalene. Reactions: Procedure: The reaction mixture was created. Tetraphenylcyclopentadienone (0.1197g, 0.3113 mmol) a black solid powder, anthranilic acid ( 0.0482g, 0.3516 mmol) a yellowish sand, and 1,2-dimethoxyethane (1.2 ml) was added to a 5-ml conical vial.
Pages 96-98 in Chemistry 110 Lab Manual. Wilfrid Laurier University, ON, Canada. Abstract: The purpose of this experiment was to determine the level of purity by using the values for melting point and absorbance and chemically synthesizing aspirin by using phosphoric acid as a catalyst.
Glacial acetic acid and acetic anhydride were added to the mixture while refluxing, which converted the lime colored solution into a clear mixture. The flask was cooled in an ice bath and the solution
Abstract: The purpose of this experiment was to identify given Unknown White Compound by conducting various test and learning how to use lab techniques. Tests that are used during this experiment were a flame test, ion test, pH test, and conductivity test. The results drawn from these tests confirmed the identity of the Unknown White Compound to be sodium acetate (NaC2H3O2) because there were no presence of ions and sodium has a strong persistent orange color. The compound then will be synthesized with the compounds Na2CO3 and HC2H3O2 to find percent yield.
Conclusion: Based on the results of molarity from Trials 1, 2, and 3, it is concluded that our experimental for each trial is .410M NaOH, .410M NaOH, and .450M NaOH. The actual molarity of the NaOH concentration used was found to be 1.5M NaOH. The percent error of the results resulted in 72%. The large error may have occurred due to over titration of the NaOH, as the color of the solution in the flask was a darker pink in comparison for the needed faint pink. Discussion of Theory:
Nevertheless, the latter is not used in this experiment since it is very reactive and extremely flammable. On the contrary, NaBH4 is relatively mild and it can be used with protic solvents. In this manner, 1.507 grs of the ketone 9-fluorenone were mixed with 30.0 ml of 95% ethanol in a 125 ml Erlenmeyer flask. The bright yellow mixture was stirred during 7 minutes until all the components were dissolved.
Experiment 2 Report Scaffold (Substitution Reactions, Purification, and Identification) Purpose/Introduction 1. A Sn2 reaction was conducted; this involved benzyl bromide, sodium hydroxide, an unknown compound and ethanol through reflux technique, mel-temp recordings, recrystallization, and analysis of TLC plates. 2. There was one unknown compound in the reaction that was later discovered after a series of techniques described above.
DETERMINATION OF PERCENTAGE ETHANOL IN BEVERAGES 1. Introduction to Gas Chromatography Gas chromatography is a very powerful separation technique for compounds that are reasonably volatile. The components of a sample partitions into two phases, the 1st of these phases is a immobile bed with a great surface area, and the other is a gas phase that permeates through the immobile bed. The sample is evaporated and passed by the mobile gas phase or the carrier gas through the column. Samples separates into the stationary liquid phase, based on their solubilities at the given temperature.
II. METHODOLOGY In order to perform this experiment, the students will need a distillation set-up with a connector receiver, an iron ring and stand, a Bunsen burner, a wire gauze, a 250mL round bottom flask, a graduated cylinder, a thermometer, one or two boiling chips, an alcoholic beverage, masking tape, an ice bath, a stirring rod, and, optionally, food coloring. It is imporatnt to avoid playing with the apparatus and equipment so as to avoid breakage and injuries, especially since fire is being dealt with in this experiment.