Fermentation test is used to determine if unknown #398 uses any oxygen to ferment carbohydrates and acids. Oxidation tests were used to determine if unknown #398 metabolizes carbohydrates and acids by cellular respiration. Both tests are observed by inoculation of unknown #398 into 3 sugar broths: lactose, glucose, and mannitol and 1 citrate (Citric acid) slant. Fifth test, Hydrolytic and Degradative reactions is used to determine if unknown #398 contains enzyme, amylase that hydrolyzes starch after streaking on a starch plate. Next test, inoculation of a urea broth and is used to determine if unknown #398 contains urease that hydrolyzes urea.
purpose the propose of this experiment was too see if the chemical reaction of a enzyme can be made faster. Hypothesis I think that a warm environment would be best to make an enzyme’s reaction faster. because a protein can move faster in heat.
Abstract This experiment showed that temperature, concentration and pH all affect the rate of enzyme reaction differently. Enzymes are very important in organisms and therefore understanding how and why they work the way they do in specific conditions is crucial. The results showed that an increase in temperature would also increase the reaction rate, until a temperature that was too high, where the enzymes began to denature and therefore the rate of reaction was slowed down. As concentration was increased, the reaction rate continued to increase.
Sucrase activity increases with increasing sucrose concentration Materials and Methods Effect of pH on Enzyme Activity 1. Dependent Variable amount of product (glucose and fructose) produced 2. Independent Variable pH 3. Controlled Variables temperature, amount of substrate (sucrose) present, sucrase + sucrose incubation time Effect of Temperature on Enzyme Activity 1.
In order to find the answer, an experiment was conducted in which 7 test tubes filled with equal amounts substrate and enzyme were subjected to various temperatures (4˚C, 22˚C, 37˚C, 45˚C, 65˚C, and 95˚C) for ten minutes. It was hypothesized by the group that difference in temperature will have a significant effect upon enzyme activity based on past knowledge on the anatomy and
Starch solution is then placed into the test tube at a quantity of 5 mL. 5 drops of Lugol’s Iodine solution is added to the test tube. If the color changes, then it is known that starches are present in the solution. Proteins are next tested. In order to do this, 5 mL of gelatin solution is added to the test tube. 10 drops of Biuret’s reagent are added to test for protein.
The iodine test determines the presence of starch in biological materials. It is predicted that, if starch is not present, the solution with iodine remains yellow. However, if starch is present the solution with iodine becomes a blue-black colour. Plants have starch as the storage polysaccharide (glucose units held together by glycosidic bonds) while animals have the equivalent of glycogen. In this experiment, the dark blue colour is visible because of the helical amylose and amylopectin reacting with iodine (Travers et al., 2002).
Generally, the average amylase concentration was highest for those who reported having high ancestral starch diets and lower for the moderate levels. Although only one data point was reported for low ancestral starch diet, it still followed the trend of a decreasing amylase concentration with decreased starch in the ancestral
The process of malting barley is a relatively simple process in which barley is
5 water bath were set up each to10 °C. (5 were used do the experiment faster) 5 cm3 of starch solution were added into the 5 test tubes that were labeled test tubes. Then 5 cm3 of amylase enzyme was added into the other 5 test tubes that were labeled. Put one of the starch solution test tube (preferably the one labeled 1) and one of the test tube containing amylase into the water bath (10 °C).
Along with being found in plants, they are also present in liver cells, kidney cells, leukocytes and erythrocytes. For the concentration of enzyme experiment, the hypothesis was if the concentration of an enzyme increases, then the enzyme activity will increase as well. The hypothesis was proven to be true, because there are more enzymes to react with substrates. For the enzyme—factors affecting, the hypothesis concluded was if the temperature increases, than the enzyme activity will increase. This however was proven wrong, because enzymes become unstable at higher temperatures.
Life Cycle of a Seed Plant Annotated Bibliography Dante, R., Larkins, B., & Sabelli, P. (2014). Cell cycle control and seed development. Frontiers in Plant Science, 5. Dante et al. mention that seed development is complex and needs a coordination of the processes including metabolic, genetic, environmental cues and physiological pathways. According to the article, different cell cycle types often occur in sequential and in overlapping manner when the endosperm and embryo are developing.
Enzymes speed up chemical reactions enabling more products to be formed within a shorter span of time. Enzymes are fragile and easily disrupted by heat or other mild treatment. Studying the effect of temperature and substrate concentration on enzyme concentration allows better understanding of optimum conditions which enzymes can function. An example of an enzyme catalyzed reaction is enzymatic hydrolysis of an artificial substrate, o-Nitrophenylgalactoside (ONPG) used in place of lactose. Upon hydrolysis by B-galactosidase, a yellow colored compound o-Nitrophenol (ONP) is formed.
In order to utilize casein, bacteria cells secrete proteolytic exoenzymes (amylases, proteases, pectinases, lipases, xylanases and cellulases) outside of the cell that hydrolyze the protein to amino acids. The amino acids can then be used by cells after crossing the cell membrane via transport proteins [169]. Starch hydrolysis test is used to differentiate bacteria based on their ability to hydrolyze starch with the enzyme α-amylase or oligo-l, 6-glucosidase. These enzymes hydrolyze starch by breaking the glycosidic linkages between the sugar subunits. It aids in the differentiation of species from the genera Corynebacterium, Clostridium, Bacillus, Bacteroides, Fusobacterium and members of Enterococcus [170].
In test tube C , the iodine solution change from brown to dark blue which is different from the expected . It is because the amylase is denatured at 75℃ that the the activity of amylase is low or even stop. Therefore, the starch is not broken down into maltose by amylase. In the test D, a dark-brown solution is seen in the test tube after adding the iodine as the pH of the 1ml 0.5M HCl is not an optimum pH for the activity of amylase that the starch is broken down into maltose . Amylase may not break down the starch well.