Briefly, 1 ml of suspension medium was taken from the 10% tissue homogenate. 0.5 ml of 30% Trichloroacetic acid (TCA) was added to it, followed by 0.5 ml of 0.8% thiobarbituric acid (TBA) reagent. The tubes were covered with aluminium foil and kept in shaking water bath for 30 minutes at 80°C. After 30 minutes, tubes were taken out and kept in ice-cold water for 30 minutes. These were centrifuged at 3000 rpm for 15 minutes.
Introduction: Benzopinacol can be prepared from benzophenone in presence of sun light (photochemically) using isopropanol as the reducing agent in presence of acetic acid. Acetic acid is added to prevent the cleavage of benzopinacol to benzophenone and benzhydrol by the alkali derived from the glass container used for the reaction. Benzopinacol obtained in the first experiment is converted to benzopinacolone by heating under reflux (5 minutes) with glacial acetic acid containing trace amount of iodine dissolved in it. This reaction is known as pinacol- pinacolone rearrangement.
The sample was transferred to a 250 ml conical flask kept in water bath for alkali treatment. 75 ml of 17.5% caustic soda was measured using a measuring cylinder at 20°C. 15 ml of 17.5% NaOH was added and fibres were macerated gently with a flattened glass rod for 1 minute. 10 ml more NaOH was added and the solution was mixed for 45 seconds. 10 ml NaOH was again added and mixed for 15 seconds to make lump free slurry.
The goal of this lab was to prepare methyl m-nitrobenzoate using electrophilic aromatic substitution using nitration. The reaction used methyl benzoate with the acid catalyst as sulfuric acid. The mechanism for the nitration using methyl benzoate is presented in Figure 1. Figure 1: Benzene can only undergo substitution reactions that are called electrophilic aromatic substitution reactions. Given that benzene rings are used commonly in the production of many organic compounds, the capability to make substitutions to benzene is critical.
The mixture was transferred to a separatory funnel, separated into an organic layer and water layer, and then drained. The water layer was washed twice with 10 mL of hexane. The organic layer was dried
This synthesis takes place through a 2-step organic reaction. It is also referred to as saponification. Saponification is a special type of hydrolysis which converts an ester into an alcohol and a carboxylic acid. The first step (1) of the hydrolysis, involves the addition of NaOH to methyl salicylate.
The hydroxyl group (-OH) of NaOH attacks an electrophilic carbon of >N-C= O which as rearrangement gives carbonial . This carbonial abstract proton from water to give NAG. The established over degradation of NAG to 4-MBA was also obseved in alkali condition. Degradation pathway of AN is shown in Fig.3.
One of the reactions you observed resulted in this product: NaCl + H2O + CO2 (g)? What well did this reaction occur in? Describe how the observations for this reaction support your answer. B BoldI ItalicsU Underline Bulleted list Numbered list Superscript Subscript70 Words A reaction I observed in number 1.)
(xi) Pyridine (xii) 1-phenyl–3-methyl– 5-pyrazolone solution: Prepare a saturated aqueous solution (approximately 0.5 gm / 100 ml) by adding the pyrazolone to water at 75 0 C. Agitate occasionally as the solution cools to room temperature. (xiii) Bis–Pyrazolone (3,3-dimethyl-1-diphenyl) (4,4’-bis-2-pyrazolone)-(5,5’
The residual biomass was separated by filtration and washed with distilled water. For alginate extraction, the acidified algal biomass was suspended in 3% Na2CO3 solution at different alkali: alga ratio (20, 40, and 60 mL/g). The different extraction temperatures ranged from 25 to 45º C, and lasted for 1 to 3 h. For each experimental run, sodium alginate was collected by filtration and precipitated with absolute ethanol (1:2 v/v). The mixture was maintained at 4º C overnight. The precipitate was collected by vacuum filtration and allowed to dry at room temperature.
The silver ion TLC was prepared through the following procedure: Silver nitrate was dissolved in 10 ml of distilled water. This aqueous solution of silver nitrate was absolutely mixed with 9 g of silica gel (10 ~ 40 μm particles). Then, a 10 × 5 cm TLC plate was coated with the above slurry and activated for 1 h at 90 °C before use. They were immediately transferred into a desiccator in dark for storage after cooling. 32 100 μL of afore-prepared sample solution and the mixed reference standard were diluted 100 times with ethyl acetate.
Drops of the Methanol were then added to each flask until the crude caffeine had completely dissolved. 13. The solution was then filtered and the residue collected in a filter paper. It was left to dry and
The goal of this experiment was to synthesize the unknown ester through Fischer Esterification. This procedure involves treating a carboxylic acid with an alcohol and a strong acid catalyst. This procedure was also catalyzed with heat at 160oC-180oC, to keep the temperature from exceeding the boiling points of the compounds in use. The acid catalyst protonated the double bonded oxygen atom to force the atom to pull two electrons away from the double bond in order to stabilize the atom’s charge. As this electron shift occurred, the alcohol attacked the carbocation that lost its double bond.
Experimental Clay-catalyzed dehydration of cyclohexanol Cyclohexanol (10.0336 g, mmol) was added to a 50 mL round bottom flask containing five boiling chips, Montmorillonite K10 clay (1.0430 g) was then added to the cyclohexanol and the mixture was swirled together. The flask was then placed in a sand bath and attached to a simple distillation apparatus. The contents of the flask were then heated at approximately 150 °C to begin refluxing the cyclohexanol. The distillation flask was then loosely covered with aluminum foil and the hood sash was lowered in order to minimize airflow. As the reaction continued, the temperature was adjusted in order to maintain a consistent rate of distillation.
The chemiluminescence part of the experiment, we had to make four solutions labeled as ‘stock solution A, solution A, stock solution B, and solution B’. For the ‘stock solution A’ we put the luminol product, (0.242 g) in a 25 mL Erlenmeyer flask and dissolve it with 2 mL of 3M NaOH. Then we took 1 mL of the ‘stock solution A’ and diluted in 9 mL of water using a 50 mL beaker. Solution A. For the ‘stock solution B’ we mixed 4 mL of potassium ferricyanide solution and 4 mL of hydrogen peroxide solution using a 25 mL Erlenmeyer flask.