The investigation was carried out to identify the presence or absence of biological molecules in serum 2216. If the concentration in each test tube of the dilutions carried out will be more concentrated then the concentration of the test tube before it, then the color will be at an equal concentration with the other dilutions performed. The hypothesis was wrong because of the difference in concentrations due to the different measurements within the dilutions done. The test for starch was to add a drop of iodine solution to the pipette in the spotting tile. A reducing sugar solutions is add inside a test tube with 3 drops to then add 3 drops of benedicts and plane in a water bath.
Fermentation test is used to determine if unknown #398 uses any oxygen to ferment carbohydrates and acids. Oxidation tests were used to determine if unknown #398 metabolizes carbohydrates and acids by cellular respiration. Both tests are observed by inoculation of unknown #398 into 3 sugar broths: lactose, glucose, and mannitol and 1 citrate (Citric acid) slant. Fifth test, Hydrolytic and Degradative reactions is used to determine if unknown #398 contains enzyme, amylase that hydrolyzes starch after streaking on a starch plate. Next test, inoculation of a urea broth and is used to determine if unknown #398 contains urease that hydrolyzes urea.
purpose the propose of this experiment was too see if the chemical reaction of a enzyme can be made faster. Hypothesis I think that a warm environment would be best to make an enzyme’s reaction faster. because a protein can move faster in heat.
Proteins were found in the victim’s stomach contents by exposing the contents to the Biuret solution and getting a positive result after the solution became purple. Protein can also be found in the meat of the victims typical, “…pizza with sausage, pepperoni, and bacon…”. Lastly, starches were found in the victim’s stomach contents though exposing the victim’s stomach contents to the Iodine solution and getting a positive result after the solution became a dark color. In pizza, starches can be found in the entire
Sucrase activity increases with increasing sucrose concentration Materials and Methods Effect of pH on Enzyme Activity 1. Dependent Variable amount of product (glucose and fructose) produced 2. Independent Variable pH 3. Controlled Variables temperature, amount of substrate (sucrose) present, sucrase + sucrose incubation time Effect of Temperature on Enzyme Activity 1.
LABORATORY REPORT Activity: Enzyme Activity Name: Natalie Banc Instructor: Elizabeth Kraske Date: 09.22.2016 Predictions 1. Sucrase will have the greatest activity at pH 6 2. Sucrase will have the greatest activity at 50 °C (122 °F) 3. Sucrase activity increases with increasing sucrose concentration Materials and Methods Effect of pH on Enzyme Activity 1. Dependent Variable amount of product (glucose and fructose) produced 2.
(Enzymes par. 1) They are very sensitive to their surroundings and highly reactive to the pH levels and temperature once exposed to either one. Temperature causes damage to the enzyme,
Starch solution is then placed into the test tube at a quantity of 5 mL. 5 drops of Lugol’s Iodine solution is added to the test tube. If the color changes, then it is known that starches are present in the solution. Proteins are next tested. In order to do this, 5 mL of gelatin solution is added to the test tube. 10 drops of Biuret’s reagent are added to test for protein.
The iodine test determines the presence of starch in biological materials. It is predicted that, if starch is not present, the solution with iodine remains yellow. However, if starch is present the solution with iodine becomes a blue-black colour. Plants have starch as the storage polysaccharide (glucose units held together by glycosidic bonds) while animals have the equivalent of glycogen. In this experiment, the dark blue colour is visible because of the helical amylose and amylopectin reacting with iodine (Travers et al., 2002).
The effect of pH on the speed of enzyme interaction with substrate chemicals Hypothesis: About pH: If the pH level is less than 5, then the speed of the enzyme reaction will be slower. About temperature: If the temperature stays the same, then the speed of the enzyme reaction will not be completely affected. Background information: The function of enzymes is to speed up the biochemical reaction by lowering the activation energy, they do this by colliding with the substrate.
5 water bath were set up each to10 °C. (5 were used do the experiment faster) 5 cm3 of starch solution were added into the 5 test tubes that were labeled test tubes. Then 5 cm3 of amylase enzyme was added into the other 5 test tubes that were labeled. Put one of the starch solution test tube (preferably the one labeled 1) and one of the test tube containing amylase into the water bath (10 °C).
Along with being found in plants, they are also present in liver cells, kidney cells, leukocytes and erythrocytes. For the concentration of enzyme experiment, the hypothesis was if the concentration of an enzyme increases, then the enzyme activity will increase as well. The hypothesis was proven to be true, because there are more enzymes to react with substrates. For the enzyme—factors affecting, the hypothesis concluded was if the temperature increases, than the enzyme activity will increase. This however was proven wrong, because enzymes become unstable at higher temperatures.
In the control, beta-amylase was present unlike the experiment, which resulted in less molecules lingering. Discussion: 1. a. My results matched my prediction regarding alcohol percentage by weight.
Introduction: Enzymes are biological catalysts that increase the rate of a reaction without being chemically changed. Enzymes are globular proteins that contain an active site. A specific substrate binds to the active site of the enzyme chemically and structurally (4). Enzymes also increase the rate of a reaction by decreasing the activation energy for that reaction which is the minimum energy required for the reaction to take place (3). Multiple factors affect the activity of an enzyme (1).
Introduction 1.1 Aim: To determine the kinetic parameters, Vmax and Km, of the alkaline phosphatase enzyme through the determination of the optimum pH and temperature. 1.2 Theory and Principles (General Background): Enzymes are highly specific protein catalysts that are utilised in chemical reactions in biological systems.1 Enzymes, being catalysts, decrease the activation energy required to convert substrates to products. They do this by attaching to the substrate to form an intermediate; the substrate binds to the active site of the enzyme. Then, another or the same enzyme reacts with the intermediate to form the final product.2 The rate of enzyme-catalysed reactions is influenced by different environmental conditions, such as: concentration