Capacitors are two conducting plates separated by an insulating material. So when a voltage is applied across the plates, the battery works on the plate to separate the negative and positive charges on the capacitor. In lab 21 we will observe this type of charge in snap circuits by using the snap circuit kit from our lab and a stopwatch. In part two of this lab, I observed how the relationship how current, voltage and resistance are used to through a system in regards to Ohm’s Law.
Introduction
In lab experiment 1 we will compare difference of the capacitors of the snap circuits in series and parallel charges. The circuits will have the capacitors placed at different locations depending on the type and we will observe the amount of time it take the LED light to turn off. In experiment two we observed the truth of Ohm’s Law V=IR. We will measure different charges of battery
…show more content…
Gather the material needed for this experiment, 470 uf, 1 LED, 1 K Ohm resistor, switch, one 4-snap conductor, or two 3 snap conductors, three 2 snap conductors, one snap conductor and a battery holder. Connect it just like it is done in figure in the Lab manual.
2. Put two AA batteries in the battery holder.
3. Turn on the switch for about two second and flip it back of observing any changes to the LED light. Record the time it takes the light to completely turn off in 1 column in Table 1.
4. Repeat steps 2-3 nine more times and record any observations of time change.
5. Now, in the average time section in Table 1, record the calculated average time.
6. Now remove the 3 snap conductors, places an S there and substitute the 100 uf capacitors. Repeat steps 2-5 with the new circuit and record the new time values under Capacitance 2 column in Table 1. Part 2:
7. Now using the same material from the lab kit, create another circuit using the same materials but starting with the 100uf
C4564 Description: IC50: 3-AP is a ribonucleotide reductase inhibitor and iron chelator with antitumor activity. Ribonucleotide reductase, the rate-limiting enzyme for de novo DNA synthesis, is an excellent target for chemotherapy. Its increased activity in cancer cells is associated with malignant transformation and proliferation.
Prelab week 1 Calculations Preparation of 1.5μmol/L mixed low-level standard dilution 150μmol/L × V1=1.5μmol/L × 10ml V1=(1.5μmol/L×10ml)/(150μmol/L)=0.1ml Conversion of milliliters to microliters (0.1ml×1000)μL= 100μL Preparation of 3μmol/L mixed low-level standard dilution 150μmol/L × V1=3μmol/L × 10ml V1=(3μmol/L×10ml)/(150μmol/L)=0.2ml Conversion of milliliters to microliters (0.2ml×1000)μL= 200μL Preparation of 3μmol/L mixed low-level standard dilution 150μmol/L × V1=7.5μmol/L × 10ml V1=(7.5μmol/L×10ml)/(150μmol/L)=0.5ml Conversion of milliliters to microliters (0.5ml×1000)μL= 500μL Preparation of the blank samples The volumetric flask will be filled to the mark with 150μmole/L of stock solution to act as blank (reference). Additional two blanks will
For this experiment we utilized varying forms of Ohm’s law (V=IR), rules for resistors in series (Rtotal=R1+R2+…) and parallels (1/Rt=1/R1+1/R2+⋯), and Kirchhoff’s Junction Rule (ΣIi=0). For these models we assumed that the DMM’s produced accurate readings
onvergence of Adaptive Noise Canceller '); legend( 'Measured Signal ', 'Error Signal '); subplot(3,3,6); plot(t,e, 'r '); hold on; plot(t,fhb, 'b '); axis([Time-4 Time -0.5 0.5]); grid on; xlabel( 'Time [sec] '); ylabel( 'Voltage [mV] '); title( 'Steady-State Error Signal '); legend( 'Calc Fetus ', 'Ref Fetus ECG '); filt_e = filter(Hd,e); subplot(3,3,7); plot(t,fhb, 'r '); hold on; plot(t,filt_e, 'b '); axis([Time-4 Time -0.5 0.5]); grid on; xlabel( 'Time [sec] '); ylabel( 'Voltage [mV] '); title( 'Filtered signal '); legend( 'Ref Fetus ', 'Filtered Fetus '); thresh = 4*mean(abs(filt_e))*ones(size(filt_e)); peak_e = (filt_e >= thresh); edge_e = (diff([0; peak_e]) >0); subplot(3,3,8); plot(t,filt_e, 'c '); hold on; plot(t,thresh, 'r '); plot(t,peak_e, 'b '); xlabel( 'Time [sec] '); ylabel( 'Voltage [mV] '); title( 'Peak detection '); legend( 'Filtered fetus ', 'Dyna thresh ', 'Peak marker ', 'Location ', 'SouthEast '); axis([Time-4 Time -0.5 0.5]); subplot(3,3,9); plot(t,filt_e, 'r '); hold on; plot(t,edge_e, 'b '); plot(0,0, 'w '); fetus_calc = round((60/length(edge_e(16001:end))*Fs) * sum(edge_e(16001:end))); fetus_bpm = [ 'Fetus Heart Rate = ' mat2str(fetus_calc)]; xlabel( 'Time [sec] '); ylabel( 'Voltage [mV] '); title( 'Reconstructed fetus
Experiment 1: Materials: • Alka-Seltzer tablets • Empty and clean water or soda bottles (12 oz to 24 oz) • Balloons • Water • Clock • Stove top Procedure: 1. Pour a sufficient amount of water (about 16 oz) into a small pot and place on the stove at high heat. 2. Watch the clock and after 30 seconds take the water off the heat.
UBT1 Task 1: Electricity Introduction What is Electricity? This question is difficult to answer because this is a broad concept of science with multiple definitions. In physics, Electricity is a naturally occurring phenomenon of the flow of electric charge. In other words, the process of attraction and repulsion between electric charges produce electricity. There are two types of charges- negative charges and positive charges.
Unknown Lab Report Unknown # 25 By: Jenna Riordan March 19, 2018 Bio 2843 1. Introduction Microbiology is the study of microorganisms found in all different environments throughout Earth, from the hot thermal vents at the bottom of the ocean to the ice at the top of a mountain.
Using two test tubes, label one “s” for substrate and the other “e” for enzyme. The substrate tube should contain 7 mL of distilled water, 0.3 mL of hydrogen peroxide, and 0.2 mL guaiacol and the enzyme tube should contain 6 mL of distilled water and 1.5 mL of peroxidase. Combine the materials of the substrate and enzyme tubes, mix the two using a clean transfer pipette, transfer a portion into a cuvette so that the cuvette is about half-full then cover the top of the cuvette with Parafilm and then place it in the spectrophotometer and record absorbance. Remove the cuvette and repeat recording absorbance at 1, 2, 3, and 4 minutes. Be sure to mix the cuvette and clean its surface with Kimwipes before each reading.
Bare copper wire, 24 gauge wire cutters ruler 1 in. plastic tube 9-v battery 6 in. Wire with alligator clips on both ends (2) small plastic bowls masking tape permanent marker distilled water tap water digital multimeter paper towel alligator clip with out a wire attached paper and pencil to record data Procedure 1.Cut 2 6in. copper wire pieces 2.Wrap 1 wire piece around the plastic tube, close to the end of the
Step 2: Mix both test tubes , shake gently and time the reaction. Step 3: The same step as procedure 1, and step 3 which is to record the observed color step 4: use the palette/color chart to help you identify the observations you make. Safety precautions: Pull your hair back Safety eye goggles Closed toe
The testing of the linear WEC was split into three main sections the first being electrical/electronic systems, the second being mechanical systems and finally complete system tests. 5.2 Electrical and Electronic Tests and Results 5.2.1 Preliminary Test Conditions Schematic Check
On April 6, 2016 at approximately 11:45am, a local police station got a call about a hostage situation at a local pharmacy. When police and medical examiners got to each crime scene, they learned that all of the hostages were given drugs and had overdosed on them. Some of the pills, in powder form, were found near the victims. One of the victims was stable enough to tell the investigators that the power on the floor were the drugs they were forced to take. The medical examiner found out each hostage was given either unknown A or unknown B.
IMPLEMENTATION ISSUES In this section, the following issues that were found, when integrating the components that were used complete the experiments. These were discussed in chapter 5. The three circuits were built from existing configurations. The circuits that were built upon the chosen configuration were the following: an analog laser driver circuit,
Focus the eyepieces to adjust your view. 3. Adjust the illumination to an appropriate level by adjusting the iris diaphragm and the condenser. The light should appear on the side directly below the objective lens, and give an even amount of illumination. 4.
Introduction The term chromatography actually means colour writing, and signifies a technique by which the substance to be examined is placed in a vertical glass tube containing an adsorbent, the different segments of the substance traveling through the adsorbent at distinctive rates of velocity, according to their degree of attraction to it, and producing bands of colour at different levels of the adsorption column. The substances least absorbed emerge earliest; those more strongly absorbed emerge later. (Wixom et al., 2011) In chromatography of all types, there is a mobile phase and a stationary phase.