PATHWAY OF GLYCOLYSIS:
The procees of glycolysis consists of 10 steps which are controlled by 10 different enzymes. There are two distinct phases in the process of glycolysis, the first one involves the break down of glucose 6-C into two 3-C pyruvate.While the second step consists of the complete conversion of pyruvate molecule and produces energy for the cells. The first 5 steps are known as preparatory steps, because they consume energy to break the glucose molecule and convert it to three carbon sugar phosphates[3].While the second phase is known as pay off phase it involves the gain of energy.
So the pathway of glycolysis can be broken down into following two phases:
• The preparatory phase
• The pay off phase
PREPARATORY PHASE:
First five steps involved in glycolysis are considered as preparatory phase. This process consumes energy to convert the glucose into two three carbon-sugar phosphates.
Why creatine is your best friend Through the years there have been quite a few dietary supplements that promise natural muscle growth and performance enhancing effects. Of these, no preparations attracted such attention as creatine. Creatine is a naturally occurring substance that forms the body from the amino acids arginine, glycine and methionine, which are mainly found in the muscles. Creatine is also found in foods such as meat and fish.
Cell Respiration Lab Research Question What is the optimal temperature for germinating pea-seeds where the rate of respiration is the greatest? Background Information Cell Respiration refers to the biochemical process conducted by the cells of an organism that combines glucose and oxygen to produce energy in the form of ATP, along with two by-products, water and carbon dioxide. The equation representing this chemical reaction is shown below. C6H12O6 + 6 O2 6 CO2 + 6 H2O
In an organism 's body, chemical reactions are constantly taking place. These essential reactions can make or break the well-being of the body, yet the brain behind these changes is often times not recognized. This little brain or “macromolecule” is called an enzyme. An enzyme is a type protein that is able to speed up over 5,000 different reaction types an organism (2). Through catalyzation, the process of speeding up chemical reactions, enzymes attach to a substrate/molecule and break it down so that it can be used throughout the organism.
Many metabolic reactions, including protein synthesis, take place in the
Once in the mitochondria, namely in the matrix, mitochondrial LDH catalyses the conversion of lactate back to pyruvate. The pyruvate is oxidized through the PDH (pyruvate dehydrogenase) reaction to acetyl-CoA. The acetyl-CoA would then continue through the TCA cycle so as to provide energy. (Kowalchuk JM et al,
This is the second step. During fermentation, from a rough dense mass lacking extensibility and with poor gas holding properties, the dough slowly changes into a smooth, extensible dough with good gas holding properties. As the yeast cells grow, the gluten protein pieces clump together to form networks. Hence, the alcohol and carbon dioxide are formed from the breakdown of carbohydrates that are found naturally in the flour. Enzymes present in yeast and flour also help to speed up this reaction.
The pyruvate molecules that were created in glycolysis are then sometimes fermented into lactic acid. Lactic acid can be used to transform lactose into lactic acid, for example in the making of yoghurt. This process is also used in animal muscles when they require extra energy in their tissue in order to run faster than oxygen can be given. C6H12O6 (glucose) > 2CH3CHOHCOOHc*lactic acid) is the net equation for glucose to lactic acid.
The stomata are the most critical piece to this process, as this is where CO2 enters and can be stored, and where water and O2 exit. Cellular respiration also known as oxidative metabolism is important to convert biochemical energy from nutrients in the cells of living organisms to useful energy known as adenosine triphosphate (ATP). Without cellular respiration living organisms would not be able to sustain life. This process is done by cells exchanging gases within its surroundings to create adenosine triphosphate commonly known as ADT, which is used by the cells as a source of energy. This process is done through numerous reactions; an example is metabolic pathway.
1.1 Abstract The purpose of quantitative analysis of protein using a spectrophotometer is to measure the concentration of proteins in a given sample. The experiment is conducted by laboratory method (Biuret Test) and using spectrophotometer to analyze the absorbance of reactants at 540 nm, hence determining the concentration of the proteins in a given sample. The purpose of stopped enzyme assay to study B-galactosidase is to determine the effect of temperature and concentrations of substrate on enzyme activity.
Introduction 1.1 Aim: To determine the kinetic parameters, Vmax and Km, of the alkaline phosphatase enzyme through the determination of the optimum pH and temperature. 1.2 Theory and Principles (General Background): Enzymes are highly specific protein catalysts that are utilised in chemical reactions in biological systems.1 Enzymes, being catalysts, decrease the activation energy required to convert substrates to products. They do this by attaching to the substrate to form an intermediate; the substrate binds to the active site of the enzyme. Then, another or the same enzyme reacts with the intermediate to form the final product.2 The rate of enzyme-catalysed reactions is influenced by different environmental conditions, such as: concentration
The Effect of Sugar Concentration on CO2 Production by Cellular Respiration in Yeast Introduction In this lab, our main focus was to find how sugar concentration affect yeast respiration rates. This was to simulate the process of cellular respiration. Cellular respiration is the process that cells use to transfer energy from the organic molecules in food to ATP (Adenosine Tri-Phosphate). Glucose, CO2, and yeast (used as a catalyst in this experiment) are a few of the many vital components that contribute to cellular respiration.
Hypothesis: If we add pineapple and meat tenderizer to the gelatin, then it will not congeal. Materials needed: Gelatin, Fresh and canned pineapple, Meat tenderizer, Beakers, Cold and boiling water, a timer, 4-5 bowls, 4-5 test tubes and a rack, and a few spoons. STEPS Step 1.
By observing figure 3, the more enzyme that is available, the faster the reaction rate is. The optimal enzyme concentration was chosen based on the R2 values from figure 2. The highest observable rate also had the best R2 number, which was closest to one. This enzyme concentration was used in part 2.
ABSTRACT: The purpose of the experiments for week 5 and week 6 support each other in the further understanding of enzyme reactions. During week 5, the effects of a substrate and enzyme concentration on enzyme reaction rate was observed. Week 6, the effects of temperature and inhibitor on a reaction rate were monitored. For testing the effects of concentrations, we needed to use the table that was used in week 3, Cells.
Role of Enzymes in Metabolic Pathways Summary Metabolic pathways are a sequences of steps found in biochemical reactions in which the product of one reaction is the substrate for the next reaction [3]. Metabolic pathways most likely happen in specific locations in the cell. The control of any metabolic process depends on control of the enzymes responsible for the reactions occur in the pathways. After food is added to the body, molecules in the digestive system called enzymes break proteins down into fats into fatty acids, amino acids, and carbohydrates into simple sugars (for example, glucose). Enzymes plays an important role in the different metabolic pathways [5].