Experimental Clay-catalyzed dehydration of cyclohexanol Cyclohexanol (10.0336 g, mmol) was added to a 50 mL round bottom flask containing five boiling chips, Montmorillonite K10 clay (1.0430 g) was then added to the cyclohexanol and the mixture was swirled together. The flask was then placed in a sand bath and attached to a simple distillation apparatus. The contents of the flask were then heated at approximately 150 °C to begin refluxing the cyclohexanol. The distillation flask was then loosely covered with aluminum foil and the hood sash was lowered in order to minimize airflow. As the reaction continued, the temperature was adjusted in order to maintain a consistent rate of distillation. When the distillation was complete, the heat was removed, allowing the clay to cool. The cyclohexene product contained within the collection flask was transferred to a scintillation vial and massed, revealing that 0.9273 g (11.31 mmol) of product was collected. Using the acquired mass of the product a percent yield value of 11.31% was found. The percent yield value was calculated by dividing the product yield obtained from the experiment (in mmol) ( m_A) by the theoretical yield (m_T) and multiplying that value by 100%. Percent yield of cyclohexene: % recovery= ((m_A ))/((m_T))•100% % recovery= ((11.31 mmol))/((100.1 mmol))•100% % …show more content…
An addition funnel containing 30% H2O2 was attached to round bottom flask. The flask was then placed in an ice-water bath and allowed to stir and cool. After cooling for five minutes, the H2O2 was added dropwise to the reaction flask. As Br2 formed, the solution began to produce a reddish brown color. Once all of the H2O2 was added, the cyclohexene (1.03 g, 12.6 mmol) produced from the first experiment was then poured into the addition funnel. In a fashion similar to the H2O2, the cyclohexene was added to the reaction flask in a dropwise
After adding the acetic acid and hydrobromic acid to the solution, and heating and recrystallizing the solution, the product triphenylmethyl bromide was created and had a mass of 0.103 g. The theoretical yield was calculated by determining the limiting reagent in the reaction. The triphenylmethanol was the limiting reagent in the reaction. The total amount of mass from the triphenylmethanol was converted to moles by using the molar mass of the triphenylmethanol. The amount of moles was then converted into grams to determine the theoretical yield, 0.125 g. The percent yield was then calculated by dividing the actual yield by the theoretical yield and multiplying the result by 100%. The percent yield was 82.4%.
Characteristic property- Test 1- distillation Materials: Goggles, 250 ml beaker, 10 ml graduated
Thus, a higher percent yield was calculated for acetaminophen. Although, a second filtration was performed; however, a very low concentration of acetaminophen was recovered as a result of human errors, and the transfer of solution/solid contributed to product loss. However, the mass use to calculate percent yield was the first mass recorded because it may be more consistent than the mass measured after the second filtration. However, for further experiments, the percent yield must be calculated with the corresponding mass of product (actual yield) even though there is loss of product, the actual yield is the final concentration of the recovered product in the experiment. Thus, the results may be more conclusive if the actual percent yield was used.
Tyler White CHEM151LL 32658 04/01/2018 Different Types Chemical Reaction Types and Equations Purpose: The purpose of this lab experiment is to examine different types of chemical reactions such as Decomposition reaction, Synthesis reactions, Combustion reactions, and different Chemical equations. The experiments were conducted online using Late Nite Labs. Materials: Because the experiments were conducted online there wasn’t any physical use of materials, only digital ones, for these labs to be performed. Only the registration for the website was needed to perform these online labs, as well as a desktop computer.
The goal of the experiment is to synthesize a bromohexane compound from 1-hexene and HBr(aq) under reflux conditions and use the silver nitrate and sodium iodide tests to determine if the product is a primary or secondary hydrocarbon. The heterogeneous reaction mixture contains 1-hexene, 48% HBr(aq), and tetrabutylammonium bromide and was heated to under reflux conditions. Heating under reflux means that the reaction mixture is heated at its boiling point so that the reaction can proceed at a faster rate. The attached reflux condenser allows volatile substances to return to the reaction flask so that no material is lost. Since alkenes are immiscible with concentrated HBr, tetrabutylammonium bromide is used as a phase-transfer catalyst.
The goal of experiment four was to use sodium dichromate to oxidize borneol to camphor. To purify the camphor use sublimation, then reduce camphor to isomeric alcohol isoborneol with sodium borohydride. Use the 1H NMR to determine the ratio of borneol to isoborneol in the final product. The experiment was carried out by using sodium dichromate to oxidize a borneol solution that was made with borneol and ethyl acetate. Once the reaction was complete the mixture was transferred into a separatory funnel where the ether and aqueous layers were separated and the aqueous layer was then extracted with two portions of ether.
The dehydration of 2-methylcyclohexanol takes place at the bottom of the Hickman still. As the Hickman still heats up within the sand bath, the products evaporate and travel higher up in the still where they condense into a liquid and fall within the collection ring, thus separating the product from the remaining water. Drierite (CaSO4) is also added as a drying agent to absorb any leftover water within the product. The purity of the product will then be analyzed with infrared spectroscopy, paying attention to OH peak if it is present. Chemical Reactions: Data and Observations: Material Volume Mol.
In the round-bottom flask (100 mL), we placed p-aminobenzoic acid (1.2 g) and ethanol (12 mL). We swirled the mixture until the solid dissolved completely. We used Pasteur pipet to add concentrated sulfuric acid (1.0 mL) to the flask. We added boiling stone and assembled the reflux. Then, we did reflux for 75 minutes.
As seen in table 1, the theoretical yield was .712 g of C_17 H_19 NO_3. The % yield of this experiment was 7.51 % of C_17 H_19 NO_3. . This low yield can be explained from a poor recrystallization technique combined with potential contamination. Throughout the experiment, the mixture changed color from green, orange, to yellowish lime, and eventually clear.
The mixture was then distilled. When the temperature was reached to about 59℃, half vial of distillate (1V) and 1 mL of the liquid residue (1L) were collected. For 61.0℃, the distillation was then continued. Samples (2V, 2L) were taken at about 61.0℃.
The percent recovery of the copper was calculated using the equation, percent recovery = (the mass of the copper recovered after all the chemical reactions/the initial mass of the copper) x 100. The amount of copper that was recovered was 0.32 grams and the initial mass of the copper was 0.46 grams. Using the equation, (0.32 grams/0.46 grams) x 100 equaled 69.56%. The amount of copper recovered was slightly over two-thirds of the initial amount.
Lab Report Experiment 6 Rates of Chemical Reactions By Nikhola Mirashirova Lab Partner: Dina Abetova Section 3, Saturday October 31, 2015 Introduction Rate reaction is the measure of the change in concentration of the reactants or the change in concentration of the products per unit time.1,2 Rate law for this experiment: Rate = k(I-)m(BrO3-)n(H+)p There are several factors which affect the rate of reaction: catalyst, reactant concentration, and temperature.1,2 A catalyst is a substance that changes, increases or decreases, the rate of a chemical reaction but is not being used up during the reaction.3 It provides an alternative way, so that the rate of reaction changes.4 Catalyst, which is used in this experiment, is (NH4)2MoO (0.5 M).
Cyclohexane was collected from 26 ml to 35 ml, thus 9 ml of cyclohexane was collected. Therefore the observed ratio of DCM to cyclohexane was 18:9 or 2:1. Two sources of error may have affected the experiment. Firstly, the experiment required volumes of liquid to be recorded while the vapours were distilling.
This verified the formation of the major products. Overall, one can say that the experiment was
The mass of vinegar used during the experiment was 4.108 grams. It was determined that there were .003129 moles of CH3COOH in the vinegar sample. Using this information and the molar mass of CH3COOH, which was 60.05 g/mol, the mass of acetic acid in the vinegar was calculated: 4.Vinegar is a 5% aqueous solution of acetic acid. Since the mass of acetic acid within the vinegar was calculated as .18789 g in step 3, the percent of CH3COOH was calculated using the following equation: To calculate the percent error, the experimental value of 4.5% acetic acid in vinegar was subtracted by the theoretical value of 5% and divided by 5% to yield a percent error of 8.54%. The following is a copy of the calculations done using decimals: 5.The equivalence point of the titration curve measured in step 1 was 25.25 mL of NaOH.