6. Rinse a 500 ml volumetric flask with deionized water. 7. Label the volumetric flask so you know which solution is in it. 8.
Purpose: The purpose of this experiment was to determine the molar mass of unknown #43 using the derived freezing point depression. To obtain the freezing point depression, t-butyl alcohol was placed in a cold-water bath and frozen solid for a total of two runs. Then, unknown #43 was dissolved in t-butyl alcohol and placed in a cold-water bath until frozen solid. This process was repeated for a total of three runs, with the first two runs containing half of the unknown, and the last run containing the full amount of unknown.
Introduction: In this assignment, I will be doing two experimentations on examining the impact of temperature on the Alka-Seltzer’s response time. The first experimentation that I will be doing involves some water that is room temperature. The second experimentation that I will be doing involves some water that is very hot. If I want to be able to figure out the impact of the temperature on water, I will have to document the time it will take for the Alka-Seltzer to go into solution.
The Effects of Temperatures on Reaction Time of Alka-Seltzer Emily Reynolds October 11, 2015 General Biology Laboratory Northwest Missouri State University Mrs. Heather Meler INTRODUCTION It has been observed that chemical reactions occur at different rates. But, what causes the rates to change? One of the most effective ways to find the answer to that question is through experiments. It has been learned through experimentation that the concentration of a chemical and the temperature can affect the rate of the reaction (Taylor and Mortimer 2002).
Materials and Methods The chemicals used to perform this experiment were distilled water, sodium chloride (NaCl), ice,
Feras Kaid Chem 2415-43 TA: Rio Assessment 1 Conclusion In this lab, there were 4 different distillations that were performed each with the same end goal to separate the two different organic compounds, cyclohexane and toluene. We used the boiling points of the two compounds to separate them using the following 4 techniques: microscale simple distillation, miniscale simple distillation, miniscale fractional packed distillation, and miniscale fractional unpacked distillation. The three different miniscale distillations were used to predict the accuracy of the distillation by comparing them to one other. The most accurate of the three distillations is the miniscale fractional packed distillation because this type uses a Vigreux column instead
Pat McGurrin October 24, 2015 Period #1 Honors Biology Mr. Dinunzio Murder and Meal Lab Analysis Procedure: 1.) Gather all materials: Safety goggles, 250ml beaker, water, hot-plate, test-tubes, paper bag tear, stomach contents, pipette, Biruet solution, Benedict’s solution, and Iodine solution. 2.) Put on safety glasses.
8. Pour 16 oz of room-temperature water into the bottle. 9. Stretch
Large bubbles with a short duration indicate a higher alcohol content, while smaller bubbles that disappear more slowly indicate lower alcohol content. A common folk test for the quality of moonshine was to pour a small quantity of it into a spoon and set it on fire. The theory was that a safe distillate burns with a blue flame, but a tainted distillate burns with a yellow flame. Practitioners of this simple test also held that if a radiator coil had been used as a condenser, then there would be lead in the distillate, which would give a reddish flame.
Name: University: Course: Date: Abstract I. Introduction/Motivation: The objective of this experiment was to characterize the behavior of a distillation column running in continuous mode. Two types of liquids were separated: 2-propanol and methanol (at 25 mol% and 75 mol% respectively).
Clamp the flask firmly to the ring stand and add the Buhner funnel with a rubber funnel stopper. 3. Get some filter paper and make sure it fits in the funnel. 4. Place the filter paper in the funnel.
This includes empty soda can without a top, thermometer, ring stand with iron ring attached, glass rod, 100 ml graduated cylinder, matches, and last but not least two different types of fuel source (propanol, ethanol). Upon completion of the experiment, we got a few notable results. We noticed that the amount of heat absorbed by water is mostly constant between the two but the noticeable difference obtained was with the heat per gram of fuel and heat of
Introduction: In this lab, of water in a hydrate, or a substance whose crystalline structure is bound to water molecules by weak bonds, is determined by heating up a small sample of it. By heating, the water of hydration, or bound water, is removed, leaving only what is called an anhydrous compound. Based on the percent water in the hydrate, it can be classified as one of three types: BaCl2O ⋅ 2H20, with a percent water of about 14.57%, CuSO4
DETERMINATION OF PERCENTAGE ETHANOL IN BEVERAGES 1. Introduction to Gas Chromatography Gas chromatography is a very powerful separation technique for compounds that are reasonably volatile. The components of a sample partitions into two phases, the 1st of these phases is a immobile bed with a great surface area, and the other is a gas phase that permeates through the immobile bed. The sample is evaporated and passed by the mobile gas phase or the carrier gas through the column. Samples separates into the stationary liquid phase, based on their solubilities at the given temperature.
Rediet Legese iLab Week # 6 CRUDE OIL DISTILLATION Introduction: The aim of this week lab experiment is to experiment distill crude oil and to check how temperature determine the chemical properties of crude oil plus how the boiling point can also show physical properties. They are two major finding in this experiment. he first finding was the point at which the raw petroleum is heated to the point of boiling, at 275 0C, the gas and kerosene oil are refined, however the oil (lubricant ) stays as an unrefined feature oil.