Students first prepped for the lab by cleaning out the crucible. Three boiling chips were added in the crucible once it was wiped out with a paper towel. The crucible was then placed on a clay triangle two finger widths above the Fischer burner. After 10 minutes of the crucible being directly under the flame, the it was clean and students allowed time for it to cool down. Next, the students from then on used tongs to transport the crucible from weighing it and back to the clay triangle. Now, they are ready to start the lab. The empty crucible is weighed by and the weight was recorded. Then the students used a disposable pipet and put close to 4.0 grams of their milk sample in their crucible on the scale. The crucible was then placed back on
In this experiment, the percent yield was 90%. This number implies that there was little error in this experiment. However, this result could have been caused by certain external factors. Firstly, because the NaHCO3 compound was not stored in a sealed container, therefore dust particles could have changed the results, and making the product impure. Also, there are uncertainties associated with the instruments used in this experiment. This, if the products were measured slightly more than should be, this could have affected the concentrations of the solutions, and therefore causing a larger
Mix a combination of the NaClO and the thiosulfate solution equal to 50 ml in a Styrofoam cup, stir with thermometer, and record temperature in the data table. Dispose of solutions and rinse cup well. Continue taking data until you have enough data to record and make a thorough graph.
The first experiment was a Synthesis reaction, this was done by burning the substance magnesium; the substances reacted to form one compound, which ended up being heavier than the first original mass of the magnesium, the final product was known as magnesium oxide. The second experiment that was conducted was the Decomposition reaction, which actually eliminated chemical elements by burning them off, therefore reducing the weight of the final product by 1.673 grams. The third experiment was known as single displacement, by adding the chemical hydrochloric acid to zinc it created a chemical reaction which actually increased the temperature, as well as the pressure within the flask. The last experiment that was conducted was known as double displacement, this experiment involved the exchange of bonds, between the two sodium hydroxide and nickel. The Nickel was forced to group together when it was placed into the sodium hydroxide, instead of mixing with the compound it would rather keep to
The purpose of the lab is to acquire the percent composition of zinc and copper. The procedure included obtaining a post 1983 penny and washing it with soap and water. Using a triangular file, we made an X on the penny. Then, we cleaned the top and bottom of the penny with steel wool until it was shiny. We rinsed the penny in acetone and dried it with paper towel. Next, we determined the mass of the penny by placing it on a balance. The mass of the penny was 2.47 grams. Afterwards, we placed the penny in a beaker filled with 20 mL of 6 M HCl. In the end we put the beaker in the fume hood and allowed it to sit overnight. During day two of the penny lab, we removed the penny skin from the beaker using tweezers. We rinsed the penny skin with
The purpose of this experiment was to determine the mass percent Cu2+ in a mineral sample (Malachite), and a rock sample (copper ore). Through the process of spectroscopy, the students were able to determine the percent of copper that each sample yielded. The students were also able to apply the information to the theoretical value of copper in malachite to determine the percent error of the mineral mass percent. Furthermore, the methods used in the experiment provide insight into how mining companies determine whether a copper ore mining site will be profitable or not. Mining companies must evaluate samples of rock to determine the percent copper which would provide the most and the purest copper for production of everyday
The purpose of this lab is to observe the reaction between hydrochloric acid and magnesium metal. When the substances are reacted over water, the products produced are a salt in aqueous solution and a gas. While the salt remains in the water as part of a solution, the gas produced will float to the top. Though water vapor pressure will affect the pressure of the gas in the eudiometer, it is possible to apply Dalton’s law of partial pursues to find the dry pressure of the gas. When the dry pressure is determined, the volume of the gas at STP can then be determined and what the experimental volume of one mole of the gas would be at STP.
In order to determine the value of X, the hydrate is heated on a burner to undergo decomposition reaction to be decomposed into CuSO4 and water vapor. Water vapor is evaporated during the reaction, leaving CuSO4 crystals, which is supposed to be white, in remain. By weighing the mass of CuSO4 and the mass difference of substance before and after the reaction, the mole of CuSO4 and H2O can be calculated. The value of X can thus be determined by calculating the mole ratio of CuSO4 and H2O.
Purpose: We are using the reaction of sodium hydroxide and calcium chloride to illustrate stoichiometry by demonstrating proportions needed to cause a reaction to take place.
Bromination is a type of electrophilic aromatic substitution reaction where one hydrogen atom of benzene or benzene derivative is replaced by bromine due to an electrophilic attack on the benzene ring.
How does the amount of baking soda mixed with vinegar affect the volume of gas produced per 10 seconds?
A compound contains 22.1% Al, 25.4% P, and 52.4% O. What is the empirical formula of this compound?
In order to determine the empirical formulas, the mass in grams is converted to moles.
Weight a clean, dry, porcelain evaporating dish on the electric balance and record this mass on an appropriate data table. If the crucible needs to be washed before use, then heat the crucible in the Bunsen burner flame for a few minutes and remove any residual water. Then allow it to cool before continuing.
Strong acids and strong acids both dissociate completely in water forming ions. However, strong acids donate a proton to form H3O+ along with a conjugate base and strong bases accept a proton to form OH- along with a conjugate acid. The chemical behavior of acids and bases are opposite. When they are together, their ions cancel out and form a neutral solution. In this experiment, HCl and NaOH will react to form NaOH and H2O with these two steps: