For this I needed to first obtain deionized water. I cleaned my large graduated cylinder and got 20 + or - 2 mL of deionized water. I then added this water to the beaker that contained the mixture I created from the last step of the experiment. I also gathered 2 boiling stones and added them to the mixture of the last step. I placed the beaker on a hot plate and heated it up to 130 degrees Celsius.
It is important to allow the ketone to dissolve completely in the solvent in
The crude tetraphenylnaphthalene in a 25-ml Erlenmeyer flask and dissolved in boiling isopropyl alcohol (12 ml). The solution was cooled to room temperature and further cooled in an ice bath for 30 minutes. Crystallization of colorless crystals occurred. The product was collect in a Hirsch funnel and washed with isopropyl alcohol. The solid was left to dry over the weekend.
Observations The purpose of this experiment was to be able to synthesize triphenylmethyl bromide from triphenylmethanol by a trityl carbocation intermediate. During the experiment, 0.100 g of triphenylmethanol was placed into a small test tube. The triphenylmethanol looked like a white powder. Next 2 mL of acetic acid was added to the test tube and the solution turned a cloudy white color.
As seen in table 1, the theoretical yield was .712 g of C_17 H_19 NO_3. The % yield of this experiment was 7.51 % of C_17 H_19 NO_3. . This low yield can be explained from a poor recrystallization technique combined with potential contamination. Throughout the experiment, the mixture changed color from green, orange, to yellowish lime, and eventually clear.
Lab Report 5: Acetylsalicylic Acid (Aspirin) Synthesis Name: Divya Mehta Student #: 139006548 Date Conducted: November 19th 2014 Date Submitted: November 26th 2014 Partner’s Name: Kirsten Matthews Lab Section: Wednesday 2:30 L9 IAs Name: Brittany Doerr Procedure: For the procedure, see lab manual (CH110 Lab Manual, Fall 2014) pages 96-98. Wilfrid Laurier University Chemistry Department. Fall 2014. Acetylsalicylic Acid (Aspirin) Synthesis.
Abstract In this experiment, the reaction kinetics of the hydrolysis of t-butyl chloride, (CH3)3CCl, was studied. The experiment was to determine the rate constant of the reaction, as well as the effects of solvent composition on the rate of reaction. A 50/50 V/V isopropanol/water solvent mixture was prepared and 1cm3 of (CH3)3CCl was added. At specific instances, aliquots of the reaction mixture were withdrawn and quenched with acetone.
The data observed and recorded in this lab shows that the concentration of miracle gro’ does affect the growth rate and germination speed of black eyed peas. The data is shown through two graphs and two data tables. The control group in this experiment is the seeds with a 0% concentration of miracle gro’, therefore the seeds with just water. The experimental groups are different concentrations of miracle gro’ including a 10%, 15%, 20%, 25%, and 30% concentration. The variable in this experiment is the amount/concentration of miracle gro’.
The possible explanations and changes to make are similar to the previous questions. Conclusion and Future Experiment 18. The identity of the product and unknown were 4-tert-butylbenzyl phenol ether and tert-butyl phenol respectively. The key to making this discovery was the melting point and TLC results!
Vacuum filtration was performed on the crude product, then it was recrystallized for purification. Melting point analysis was conducted on the recrystallized product to determine its identity. 3. The three possible mechanisms in this experiment were syn-addition
The goal of the experiment is to synthesize a bromohexane compound from 1-hexene and HBr(aq) under reflux conditions and use the silver nitrate and sodium iodide tests to determine if the product is a primary or secondary hydrocarbon. The heterogeneous reaction mixture contains 1-hexene, 48% HBr(aq), and tetrabutylammonium bromide and was heated to under reflux conditions. Heating under reflux means that the reaction mixture is heated at its boiling point so that the reaction can proceed at a faster rate. The attached reflux condenser allows volatile substances to return to the reaction flask so that no material is lost. Since alkenes are immiscible with concentrated HBr, tetrabutylammonium bromide is used as a phase-transfer catalyst.
This was proved by utilizing the IR spectrum to verify the C =O was not in the final product as it lacked the 1640 cm-1 peak. The melting point of 113-115 degrees C proved that the final product obtained was the E-Stilbene. The TLC plate proved that the E and the Z product was produced, show cased by the double intensity of the DCM spot to the final product’s spot, both which had an Rf of 0.92. The double intensity proved that both products were produced, but through heating and filtering, the Z-Stilbene was
Abstract — This experiment was conducted to familiarize the students with the procedures regarding distillation—to be more precise, the separation of ethanol from an alcoholic beverage—using a distillation set-up consisting of boiling chips, a Bunsen burner, a condenser, a thermometer and several other materials. In the end, it was discovered that one may actually separate a homogeneous mixture, given that the components of said mixture differ in volatility and that they utilize a complete distillation set-up and follow laboratory safety rules and regulations. Keywords — Matter, homogeneous and hetereogeneous mixtures, distillation, volatility, boiling point I. INTRODUCTION There are typically two categories of matter, these are pure substances
In this experiment, it was possible to produce the major products from bromination of acetanilide and aniline. 0.075g of 4-bromoacetanilide and 0.156g of 2,4,6-tribromoanilne were collected from bromination of 0.07g acetanilide and 0.05g aniline with the percent yield of 67.57% and 88.1% respectively. At the end of the experiment, to prove the formation of the major products, melting point of the products were measured. The melting point of the product from the bromination of acetanilide was 164.8-168.50c, which is in the range of the melting point of 4-bromoacetanilide, 165-1690c, as reported on the Chemical Book, CAS Database List (chemicalbook.com). The melting point of the product from the bromination of aniline was 119.8-121.90c, which is in the range of the melting point of 2,4,6-tribromoaniline, 120-1220c, as indicated on PubChem, Open Chemistry Database (pubchem.ncbi.nlm.nih.gov).
Purpose/Introduction The process of recrystallization is an important method of purifying a solid organic substance using a hot solution as a solvent. This method will allow the separation of impurities. We will analyze Benzoic Acid as it is dissolved and recrystallized in water and in a solvent of Methanol and water. Reaction/Summary