What will be the effects of varying temperatures of hydrogen peroxide on the speed of the chemical reaction that occurs by the catalase enzyme within hydrogen peroxide?
If the temperature of the hydrogen peroxide is increased to 40° or more the catalase enzymes reaction speed (time it will take for the filter paper to float to the hydrogen peroxides surface in the test tube) will drastically decrease and ultimately the enzyme will become less effective.
Independent.
The temperature of the hydrogen peroxide.
Dependent.
Speed ( in seconds) or the reaction rate of the Catalase enzyme that occurs within the test tube. (The amount of time (in seconds) each piece of filter paper required to reach the surface of the test tube.)
Control.
There needs to be a constant amount of hydrogen peroxide added to each test tube.
There needs to be a constant size used of the potato slices and filter paper.
Materials.
Food scale.
A blender.
A thermometer.
A stop watch that encapsulates the ability to track laps.
A hot plate or a Bunsen burner.
A large piece of filter paper.
9 test tubes.
9 beakers.
2 small metal trays.
Tweezers.
Dropper.
1 bottle of hydrogen peroxide.
1 potato (alternatives are radish or celery.)
A full tray of ice cubes.
Marker.
Note book to record results.
Method.
1. We sliced the potato into 9 equal pieces of 5cm by 5cm squares and then I weighed each slice on the food scale to ensure each weighed exactly 5 grams.
2. We cut the filter paper into 9 ,5mm by 5mm squares.
3. We
Coursework Equipment List • Boiling tubes (8) I will use these because this is where I will mix both the sodium carbonate and the strontium nitrate in order to form the precipitate. I need 8 because I am going to add 8 different amounts of strontium nitrate (1-8cm³) to the 8cm³of sodium carbonate. • Measuring cylinder (1) I will use this to measure the 8cm³ of sodium carbonate and the varying amounts of strontium nitrate to put into the test tubes. • Sodium Carbonate (enough to fill 8 boiling tubes with 8cm³/64cm³)
Because of the fact that reactions are catalyzed by enzymes when they randomly collide with substrate molecules, increasing the temperature would increase the reaction rate. Increasing the temperature further increases the vibrational energy of the enzyme molecules, straining the bonds that keep them together. Furthermore, when the temperature is higher, more bonds will break because of these strains, causing the active site of the enzymes to change too. Similar to pH, a change in the shape of the active site leads to the substrate not being able to fit perfectly, leading to the enzyme not being able to catalyze the reaction. Overall, an increase in temperature will cause the rate of reaction to increase initially due to the increased kinetic energy.
Experiment 1: Materials: • Alka-Seltzer tablets • Empty and clean water or soda bottles (12 oz to 24 oz) • Balloons • Water • Clock • Stove top Procedure: 1. Pour a sufficient amount of water (about 16 oz) into a small pot and place on the stove at high heat. 2. Watch the clock and after 30 seconds take the water off the heat.
Now, they are ready to start the lab. The empty crucible is weighed by and the weight was recorded. Then the students used a disposable pipet and put close to 4.0 grams of their milk sample in their crucible on the scale. The crucible was then placed back on
After record your data and determine the absolute rate of the enzyme-catalyzed reaction. Based on the data and observations the hypothesis was accepted. It was accepted because when pH were changed to a variety of levels the transmittance began to get higher reaction rates. The increased absorbance means greater amount of product and a higher reaction rate will be produced.
It was hypothesized that the optimal pH for the enzyme was pH 7 while the 1.0 ml peroxidase would have the best reaction rate. At the end of the experiment the results prove the hypothesis to be incorrect. INTRODUCTION Enzymes are proteins that allow a reaction to speed up. These proteins are made up of monomers known as amino acids.
I measure one cup of tap water in a two-cup measuring cup. I will then use a mixer to move the water at medium speed (three). The mixer will not touch the bottom and will be steadied by placing it on a platform. I will then drop a square of toilet paper in the moving water while starting a stopwatch. I will time it until it breaks apart into small pieces.
The effect of pH on the speed of enzyme interaction with substrate chemicals Hypothesis: About pH: If the pH level is less than 5, then the speed of the enzyme reaction will be slower. About temperature: If the temperature stays the same, then the speed of the enzyme reaction will not be completely affected. Background information: The function of enzymes is to speed up the biochemical reaction by lowering the activation energy, they do this by colliding with the substrate.
The control in the experiment is water. Units used while timing the productivity of gas from an Alka-Seltzer tablet in different temperatures is, seconds. In order to find out if temperature controls the rate of chemical reaction, whether hot water is a more effective way to make the gas produce at a faster speed, it would be necessary to compare the results of different temperatures at the end of each trial. In order to do this the scientists will measure the volume of gas that is produced within a 10 second interval time after the tablet begins to react.
We zeroed out the scale and weighed all four potato cores at once and recorded the mass. We then put those potato cores into the beaker of 75 mL of solution. With the potato cores in the beaker we then put a watch glass over the top of the beaker to minimize the amount of solution that evaporates. We let the potato cores sit in the solution overnight. The next day we then emptied the beaker of the solution by carefully draining the solution, while not letting the potato cores fall out.
These factors include the pH and the temperature of the solution (1). Most enzymes have a preferred temperature and pH range (2). The preferred temperature for catalase falls between the ranges of thirty five to fifty degrees Celsius (4). Temperatures that are too high denature the enzyme and halt the enzyme’s activity (2). Catalase denatures starts to denature at fifty five degrees Celsius (2).
Research question What is the effect of temperature Amylase activity? Word count-1453 Background research Enzymes are biological catalysts that speed up a chemical reactions. They do this by decreasing the activation energy(the energy needed to start the reaction) of a chemical reaction. The enzyme present in our saliva is called Amylase. Amylase increases the rate of reaction by decreasing the activation energy needed to hydrolyse the starch molecules.
Introduction 1.1 Aim: To determine the kinetic parameters, Vmax and Km, of the alkaline phosphatase enzyme through the determination of the optimum pH and temperature. 1.2 Theory and Principles (General Background): Enzymes are highly specific protein catalysts that are utilised in chemical reactions in biological systems.1 Enzymes, being catalysts, decrease the activation energy required to convert substrates to products. They do this by attaching to the substrate to form an intermediate; the substrate binds to the active site of the enzyme. Then, another or the same enzyme reacts with the intermediate to form the final product.2 The rate of enzyme-catalysed reactions is influenced by different environmental conditions, such as: concentration
H20 + 2 O2 This experiment will use 1% catalase solution and 3% hydrogen peroxide solution, both diluted into water so the reaction slows down. Temperature will be controlled in this experiment to change the reaction speed of the enzyme and the substrate, this is what the experiment is looking at. The effect of the temperature will be determined by how much gas is released in two minutes, which will change the pressure inside the test tube and will be measured by a gas
ABSTRACT: The purpose of the experiments for week 5 and week 6 support each other in the further understanding of enzyme reactions. During week 5, the effects of a substrate and enzyme concentration on enzyme reaction rate was observed. Week 6, the effects of temperature and inhibitor on a reaction rate were monitored. For testing the effects of concentrations, we needed to use the table that was used in week 3, Cells.