Everything can change from one substance to another, but the creation and the end of some things never happen .On a beautiful day on the fourth of December in 2015, the class of SNC1D5 started a lab on different kinds of molecules. The reason why we did this lab was to investigate the chemical and physical changes between different substances. Substances can change from one substance to another that have alternate physical and chemical properties by chemical reactions or with reactants or with heat. A physical change mixes up molecules but doesn’t hurt their inner structure. An example of physical change is ice turning into water due to heat because it didn’t change the substance’s material. A chemical change occurs when there’s a new arrangement
Purpose/ Methods The purpose of this experiment was to determine the mass percent Cu2+ in a mineral sample (Malachite), and a rock sample (copper ore). Through the process of spectroscopy, the students were able to determine the percent of copper that each sample yielded. The students were also able to apply the information to the theoretical value of copper in malachite to determine the percent error of the mineral mass percent. Furthermore, the methods used in the experiment provide insight into how mining companies determine whether a copper ore mining site will be profitable or not.
Abstract: The purpose of this experiment was to identify given Unknown White Compound by conducting various test and learning how to use lab techniques. Tests that are used during this experiment were a flame test, ion test, pH test, and conductivity test. The results drawn from these tests confirmed the identity of the Unknown White Compound to be sodium acetate (NaC2H3O2) because there were no presence of ions and sodium has a strong persistent orange color. The compound then will be synthesized with the compounds Na2CO3 and HC2H3O2 to find percent yield.
Lastly, it told us to repeat the same steps until we had three calcium chloride scoops in the beaker and repeat for two more trials for accurate results. To sum up the experiment, it said to record the average change in temperatures to the class averages to graph a bar graph comparing both of the averages. That’s the procedure on how to conduct the experiment correctly. The averages that my group received for zero scoops were 0.5 degrees Celsius, one scoop was 6.5 degrees
Before starting the heating process, measure the weight of the crucible with its cover first and then tare the balance, and after that adding about 1 gram of the sample to the crucible with its cover, and then weigh it. Moreover, it is possible liberating harmful gases during the process of heating; therefore, being careful is important. The heating process ends when this sample changes the color to brown because water of hydration is removed to the sample. Additionally, give time to the small cool down and measure its weight. Next, transfer the sample to a 50 mL beaker and mixes with distilled water, which gets by rinsing the crucible with its cover in 8mL, so the solution is generated.
Empirical Formula of Magnesium Oxide - Lab Report Background Information/Introduction: The aim of this lab is to determine the empirical formula of magnesium oxide by converting magnesium to magnesium oxide. As an alkali earth metal, magnesium reacts violently when heated with oxygen to produce magnesium oxide and magnesium nitride as a byproduct. In order to obtain only magnesium oxide, distilled water was added so that magnesium nitride will react and convert to magnesium hydroxide. Further heating then oxidizes all of the magnesium into magnesium oxide.
3mL of the liquid in each of the vials were added into cuvettes and measured in the spectrophotometer. Before each time point the photo spectrometer was zeroed using a cuvette with 3mL of distilled water. If any of the results were considered unusual the machine was zeroed again and the sample was retested. The results from the spectrophotometer test were recorded in a table. The experiment was repeated six times to gain a sample size of six.
Introduction: In this lab, of water in a hydrate, or a substance whose crystalline structure is bound to water molecules by weak bonds, is determined by heating up a small sample of it. By heating, the water of hydration, or bound water, is removed, leaving only what is called an anhydrous compound. Based on the percent water in the hydrate, it can be classified as one of three types: BaCl2O ⋅ 2H20, with a percent water of about 14.57%, CuSO4 ⋅ 5H2O, which has about 36.0%, and CuCl2 ⋅5H20 (21.17%).
Danielle Pitter CHEM 137 Professor D’Amelia 3/1/17 Extraction of a Neutral Compound from Acid and Base Impurities Discussion: The diethyl ether solvent is nonpolar; therefore, based on the expression like dissolves like, other nonpolar molecules will dissolve in it. The 9-fluorenone is a nonpolar molecule; therefore, it will dissolve in the nonpolar diethyl ether. The benzoic acid has a polar carboxyl group; however, the ring is nonpolar. The nonpolar ring in the benzoic acid is what makes it soluble in the diethyl ether.
+ yS(s)→ CuxSy (s) . We knew the empirical formula for copper sulfide is Cu2S. Based on the law of conservation of matter, we got the balanced equation: 2Cu + S = Cu2S 9.Percentage Error
Balanced Chemical Equation: Cu(s) + 4HNO3(aq) —> Cu(NO3)2 (aq) + 2NO2 (g) + 2H2O (l) Reaction 2: when sodium hydroxide (NaOH) is added to copper (II) nitrate (Cu(NO3)2), a double displacement reaction will occur. Copper and sodium will displace each other to create copper (II) hydroxide and sodium nitrate. Balanced Chemical Equation: Cu(NO3)2 (aq) + 2NaOH (aq) —> CuOH2 (s) + 2NaNO3 (aq) Reaction 3: When copper (II) hydroxide is heated, a decomposition reaction will occur. The reaction will decompose forming two compounds, Copper (II) oxide, and water. Balanced Chemical Equation: Cu(OH)2 (s) + Heat —> CuO (s)
Properties of Ionic and Covalent Substances Lab Report Introduction The purpose of this lab was to determine which of the following substances: wax, sugar, and salt, are an ionic compound and which are a covalent compound. In order to accurately digest the experiments results, research of definitions of each relating led to the following information: ionic compounds are positive and negatively charged ions that experience attraction to each other and pull together in a cluster of ionic bonds; they are the strongest compound, are separated in high temperatures, and can be separated by polar water molecules. A covalent compound forms when two or more nonmetal atoms share valence electrons; covalent compounds are also
- A hydrate is a salt that contains water as a part of its crystal structure. The
Introduction The goal of the experiment is to examine how the rate of reaction between Hydrochloric acid and Sodium thiosulphate is affected by altering the concentrations. The concentration of Sodium thiosulfate will be altered by adding deionised water and decreasing the amount of Sodium thiosulphate. Once the Sodium thiosulphate has been tested several times. The effect of concentration on the rate of reaction can be examined in this experiment.
CLAIRE MUNTING 29/01/2018 Criterion C EFFECTS OF SURFACE AREA OF CALCIUM CARBONATE UPON RATE OF REACTION Calcium Carbonate Chips 1 Introduction: Within the current investigation, the effects of the surface area of Calcium Carbonate (CaCO3) in combination with Hydrochloric acid (HCl) upon its rate of reaction. CaCO3, commonly referred to as limestone, is an organic substance and is, in a sense, the crystallised “carbonic salt” of the element, calcium2. In addition to being a salt, the pH level of Calcium Carbonate is 9.91, and it is therefore, a basic substance, due to the fact that it is comprised of a pH level higher than 7, which is neutral3. HCl, however, is the bodily acid found in the stomach of human beings.