# Le Chatelier's Theory

800 Words4 Pages

INTRODUCTION The concept of chemical equilibrium was developed after Berthollet (1803) found that some chemical reactions are reversible. For any reaction mixture to exist at equilibrium, the rates of the forward and backward (reverse) reactions are equal. In the following chemical equation with arrows pointing both ways to indicate equilibrium, A and B are reactant chemical species, S and T are product species, and α, β, σ, and τ are the stoichiometric coefficients of the respective reactants and products: α A + β B ⇌ σ S + τ T The equilibrium concentration position of a reaction is said to lie "far to the right" if, at equilibrium, nearly all the reactants are consumed. Conversely the equilibrium position is said to be "far to the left" …show more content…

It states that changes in the temperature, pressure, volume, or concentration of a system will result in predictable and opposing changes in the system in order to achieve a new equilibrium state. Le Chatelier's principle can be used in practice to understand reaction conditions that will favor increased product formation. This idea was discovered and formulated independently by Henri Louis Le Chatelier and Karl Ferdinand Braun Changes in Concentration According to Le Chatelier's principle, adding additional reactant to a system will shift the equilibrium to the right, towards the side of the products. By the same logic, reducing the concentration of any product will also shift equilibrium to the right. The converse is also true. If we add additional product to a system, the equilibrium will shift to the left, in order to produce more reactants. Or, if we remove reactants from the system, equilibrium will also be shifted to the left. Thus, according to Le Chatelier's principle, reversible reactions are self-correcting; when they are thrown out of balance by a change in concentration, temperature, or pressure, the system will naturally shift in such a way as to "re-balance" itself after the …show more content…

For an endothermic reaction, heat is absorbed in the reaction, and the value of ΔH is positive. For an exothermic reaction, the situation is just the opposite. Heat is released in the reaction, so heat is a product, and the value of ΔH is negative. If we picture heat as a reactant or a product, we can apply Le Chatelier's principle on raising or lowering concentrations. For instance, if we raise the temperature on an endothermic reaction, it is essentially like adding more reactant to the system, and therefore, by Le Chatelier's principle, the equilibrium will shift the right. Conversely, lowering the temperature on an endothermic reaction will shift the equilibrium to the left, since lowering the temperature in this case is equivalent to removing a