Capacitors are two conducting plates separated by an insulating material. So when a voltage is applied across the plates, the battery works on the plate to separate the negative and positive charges on the capacitor. In lab 21 we will observe this type of charge in snap circuits by using the snap circuit kit from our lab and a stopwatch. In part two of this lab, I observed how the relationship how current, voltage and resistance are used to through a system in regards to Ohm’s Law. Introduction In lab experiment 1 we will compare difference of the capacitors of the snap circuits in series and parallel charges.
An increment of 3cm for every x coordinate (x=0, 3, 6, 9, 12, and 15) and voltage readings of .25, .30, .50, .75, and 1.00 will be measured. Below are two tables (because two different metal plates are used) of data that illustrate the voltage readings collected during the experiment. The readings on the voltmeter measure the electric potential of two different charge distributions and this measurement can be used to find the electric field. Electric field lines starts on a positive charge and end on a negative charge. The number of electric field lines tells us the amount of
To measure this three electrodes are used, a glassy carbon working electrode, an Ag/AgCl reference electrode, and an auxiliary electrode which is made of platinum (Pt wire)2. An electrical current is passed from the working to the auxiliary electrode, then as noted above, the current is switched. This creates four distinct parameters; an anodic peak current (ipa), cathodic peak current (ipc), anodic peak potential (Epa), and the cathodic peak potential (Epc)1. These values can be used to determine the half-cell potential, an unknown concentration and
Introduction The goal of this experiment was to acquire an understanding of the fundamentals of measurement in addition to analyzing the gathered data. During the experiment, an understanding of basic experimental error was gained as well as how to utilize the error equations to account for margins of error in each experiment. For Investigation 1, the mass, length and diameter of four separate cylinders was measured and utilized to calculate the volume and density of the cylinders. After recording these results in the table, the data of the cylinders was graphed. Then, in Investigation 2, a Geiger counter was utilized to measure background radiation in the lab at intervals of one minute for sixty minutes.
Is the voltage across each of the resistors different for every resistor? The voltage that runs through the resistors are the same when current flows through the resistors, it is different when the voltage drops. Q7. Assume that you have a 10-Ohm, a 20-Ohm, and a 30-Ohm resistor in series connected to a 6.0-Volt battery. What is the total resistance of this circuit?
Early measuring instrument for small electric currents consisted of coil of insulated copper wire wound on a circular non-magnetic frame. Working based on the principle of the tangent law of magnetism. Galvanometer works on the principle of conversion of electrical energy into mechanical energy. When the current flows in a magnetic torque. Galvanometer has a word called sensitivity of galvanometer is defined as the current in micro ampere required to consume one millimeter deflection on a scale placed 1m away from a mirror.
The experimental value yielded a result of y = -100x + 10 and the theoretical yielded a -100 V/m. The percent error between the two values was 0.00%. The experiment showed that the theory of the relationship between equipotential lines and electric field lines hold true. Introduction: The objective of this lab was to analyze the nature of electric fields formed by two dipoles and two parallel line conductors using a digital voltmeter. The purpose is to test the theory that states equipotential lines always run perpendicular to electric field lines.
The mesh had 144005 elements. The fine meshing is shown in Fig 3. Results: The transient thermal analysis was carried using Ansys Workbench 14.0 and the results were obtained for various time periods. Fig 4 shows the results for Aluminium for all three laser configurations after 60 seconds. Similarly, Fig 5 and Fig 6 show the results for Copper and Stainless Steel respectively.
This is given in Equation 15. (dC_A)/dV=r_A/Q (15) Conductivity In the experiment the concentration of the mixture is measured by the means of a conductivity probe. The conductivity referred to in this case is electrical conductivity. This is the ability of ionised compounds to transfer electrical current in an aqueous solution. It is measured in units of mS/cm.
The pulse generator circuit consists of electronic circuit for generating pulses and a transducer for transmitting these electronic pulses into mechanical energy having frequency 15 to 50 kHz. The time of travel between initial onset and the reception of the pulse is measured electronically. A typical test circuit is shown in Fig.