Metabolic engineered of biocatalyst: A solution for PLA based problems
ABSTRACT
Poly lactic acid(PLA) is a biodegradable polymer used in many biomedical as well as in packaging Applications. Conventionally, PLA is produced by two method which is direct condensation of lactic acid and ring opening polymerization. The polymer produced from these conventional methods produced polymer which have low molecular weight. Conventional methods of PLA production requires catalyst which makes it unfit for biomedical Applications. Newer method utilizes metabolic engineering for direct production of PLA by fermentation. This can be done by introducing propionate CoA-transferases gene and polyhydroxyalkanoate synthase gene to E.coli for lactyl CoA production. This lactyl CoA by produces by gene manipulation produces poly lactic acid by fermentation. The polymer produced from this method have high quality and increased yield which makes it fit for biomedical applications.
key words: biodegradable, E.coli, genetic engineering, lactic acid , lactyl CoA, polyhydroxyalkanoate (PHA), Poly lactic acid
INTRODUCTION
Polylactic acid (PLA) is rigid thermoplastic polymers that have semi crystalline or totally amorphous geometry, depending on the optical purity of the polymer backbone [1]. Lactic acid has
…show more content…
Lactic acid is produced by two methods i.e, chemical method and fermentation method[3]. Chemical method utilizes petrochemical resources followed by addition of HCN and specific catalyst to produce lactic acid [3]. While fermentation methods utilizes renewable resources such as carbohydrate in a fermented broth to obtain lactic acid [3]. Optical purity of lactic acid is very important and hense is major addressed problem in production of PLA. Chemical method produces racemic mixture of both D(-) and L(+) lactic acid while fermentation methods produces only one optically pure form of D(-) or L(+) lactic acid
Therefore, liquid-liquid and acid-base extraction techniques were successfully performed to separate the components of the Excedrin tablet. According to the TLC analysis results, the compounds (aspirin, acetaminophen, and caffeine) were successfully isolated from the analgesic (Excedrin tablet). In figure 1, the separation of the compound in the TLC analysis correlates with the TLC analysis in figure 2. Furthermore, Rf index calculations of the TLC analysis demonstrated that the compounds (aspirin, acetaminophen, and caffeine) were separated. The Rf calculations of aspirin in table 1 shows an Rf value of .491; however, in table 2 the Rf value of aspirin was calculated to be .784.
Lab Report 5: Acetylsalicylic Acid (Aspirin) Synthesis Name: Divya Mehta Student #: 139006548 Date Conducted: November 19th 2014 Date Submitted: November 26th 2014 Partner’s Name: Kirsten Matthews Lab Section: Wednesday 2:30 L9 IAs Name: Brittany Doerr Procedure: For the procedure, see lab manual (CH110 Lab Manual, Fall 2014) pages 96-98. Wilfrid Laurier University Chemistry Department. Fall 2014. Acetylsalicylic Acid (Aspirin) Synthesis.
Transformation was successful in the plates where the bacteria consumed the pGLO plasmid. In the first plate that the bacterium was plated on it included the LB broth and of ampicillin antibiotic (amp), 2 colonies were present. The second plate of bacteria was grown with the presence of LB broth, ampicillin, arabinose sugar (ara), and 22 colonies were observed. But a green fluorescent glow of the colonies was only present in plate 2. Plates 3 and 4 were the control plates.
Another hypothesis made was that the bacteria would glow with the addition of the sugar arabinose. All three of the objectives seem to go hand in hand. The lab began by inserting transformation
Usually, the microbial enzymes have various potential uses in industries and medicine. The microbial enzymes are also more reliable than plant and animal enzymes as they are more stable and active. Also the microorganisms demonstrate an alternative source of enzymes because they can be cultured in large quantities in a short time by fermentation and owing to their biochemical diversity and susceptibility to gene manipulation. Industries are looking for new microbial strains in order to produce different enzymes to fulfil the current enzyme
A milk-based, litmus broth tube is incubated and observed after 48 hours. Observations include lactose fermentation without gas as well as with gas, the reduction of litmus, casein protein coagulation and casein and protein hydrolysis. These characteristics were all determined based on the color of the solution and the production of a curd, the curds density and the production of a gas. To determine the density of the curd, the tube was slightly turned to see rather or not it was mobile or concentrated towards the bottom. 2.3 Carbohydrate Fermentation of Lactose, Sucrose and
The purpose of this lab was to perform a procedure known as genetic transformation which allowed us to genetically engineer E. Coli to be ampicillin resistance. Before the lab we expected that lysogeny broth and minus DNA will have growth but no glow. The lysogeny broth, ampicillin, and
C12H22O11 (lactose) + H2O > 4CH3CHOHCOOH (lactic acid) is the equation for lactose to lactic acid.
In the round-bottom flask (100 mL), we placed p-aminobenzoic acid (1.2 g) and ethanol (12 mL). We swirled the mixture until the solid dissolved completely. We used Pasteur pipet to add concentrated sulfuric acid (1.0 mL) to the flask. We added boiling stone and assembled the reflux. Then, we did reflux for 75 minutes.
Joshua Miller 12/18/17 Fermentation Lab report Introduction The term fermentation refers to the chemical breakdown of a substance by bacteria, yeasts, or other microorganisms, typically involving effervescence and the giving off of heat (wikipedia). Sugars are converted to ethyl alcohol when fermentation happens. In this experiment we determined if yeast cells undergo fermentation when placed in a closed flask with no oxygen. Glucose and yeast are mixed together in a closed flask and allowed to incubate for about one hour.
Lecturer Date Introduction Theoretical Background Procedure The procedure was segmented into two categories, the reaction set up and the crude product isolation. Reaction set up The magnetic stirrer was prepared through placing it in the fume cupboard. 1 mmol of L-Phenylalanine was placed and weighed in a 5 mL conical vial.
Purpose/Introduction The process of recrystallization is an important method of purifying a solid organic substance using a hot solution as a solvent. This method will allow the separation of impurities. We will analyze Benzoic Acid as it is dissolved and recrystallized in water and in a solvent of Methanol and water. Reaction/Summary
Acids are proton donors in chemical reactions which increase the number of hydrogen ions in a solution while bases are proton acceptors in reactions which reduce the number of hydrogen ions in a solution. Therefore, an acidic solution has more hydrogen ions than a basic solution; and basic solution has more hydroxide ions than an acidic solution. Acid substances taste sour. They have a pH lower than 7 and turns blue litmus paper into red. Meanwhile, bases are slippery and taste bitter.
CLAIRE MUNTING 29/01/2018 Criterion C EFFECTS OF SURFACE AREA OF CALCIUM CARBONATE UPON RATE OF REACTION Calcium Carbonate Chips 1 Introduction: Within the current investigation, the effects of the surface area of Calcium Carbonate (CaCO3) in combination with Hydrochloric acid (HCl) upon its rate of reaction. CaCO3, commonly referred to as limestone, is an organic substance and is, in a sense, the crystallised “carbonic salt” of the element, calcium2. In addition to being a salt, the pH level of Calcium Carbonate is 9.91, and it is therefore, a basic substance, due to the fact that it is comprised of a pH level higher than 7, which is neutral3. HCl, however, is the bodily acid found in the stomach of human beings.
Abstract The unknown concentration of benzoic acid used when titrated with standardized 0.1031M NaOH and the solubility was calculated at two different temperatures (20◦C and 30◦C). With the aid of the Van’t Hoff equation, the enthalpy of solution of benzoic acid at those temperatures was determined as 10.82 KJ. This compares well with the value of 10.27KJ found in the literature.