2. The color of the copper carbonate hydrate as it was heated can help identify the product?
The purpose of this experiment was to identify given Unknown White Compound by conducting various test and learning how to use lab techniques. Tests that are used during this experiment were a flame test, ion test, pH test, and conductivity test. The results drawn from these tests confirmed the identity of the Unknown White Compound to be sodium acetate (NaC2H3O2) because there were no presence of ions and sodium has a strong persistent orange color. The compound then will be synthesized with the compounds Na2CO3 and HC2H3O2 to find percent yield. Weighed 1 gram of NaC2H3O2 and mixed it with ionized water. Boiled 12 mL of 1.0M Acetic Acid added into a beaker containing the sodium carbonate on a hot plate until all the liquid is evaporated
Reaction 2: when sodium hydroxide (NaOH) is added to copper (II) nitrate (Cu(NO3)2), a double displacement reaction will occur. Copper and sodium will displace each other to create copper (II) hydroxide and sodium nitrate.
1. Suppose a household product label says it contains sodium hydrogen carbonate (sodium bicarbonate). Using your results from Data Table 1 as a guide, how would you test this material for the presence of sodium bicarbonate?
The objective of the Unknown White Compound experiment was to investigate the compound’s physical and chemical properties to correctly identify and then synthesize the compound. The first step was to test the compounds solubility and create a solution with distilled water. Next, a pH test was conducted by testing the unknown compound using pH paper. Following, the flame test was used to determine the cation and the ion test was used to determine the anion, which concluded the compound to mostly be potassium nitrate. Next, a conductivity probe and pH probe were used to confirm the unknown compound to be potassium nitrate. The final step was to synthesize potassium nitrate using silver nitrate and potassium chloride. The experiments listed above concluded the unknown white compound to be potassium nitrate.
The next test was the pH test. In this test, the aqueous solutions from the flame tests were used again. A piece of pH paper was dipped into the aqueous solutions, a different piece for each solution. The ensuing coloration of the paper was compared to the pH scale and the
A lab was conducted to test the reactivity of metals in single-replacement reactions. This lab was done to solve the problem of which metals will replace each other in single-replacement reactions. A single replacement reaction is a type of oxidation-reduction chemical reaction when an element or ion moves out of one compound and into another. It was presumed before the experiment that the location of the metal on the Activity Series chart would thus determine the reactivity of the metal. Copper, magnesium, iron, and zinc were all tested in the same five solution compounds; which included hydrochloric acid, sulfate, magnesium chloride, iron chloride, and zinc chloride. Observations of chemical changes within the reaction were recorded to describe the results of the reaction and each metal's reactivity. An example of a single replacement reaction is the Statue of Liberty, which has copper on the outside and iron as an inner support. As time went by, the copper started to react with air and form a verdigris coat, or a bright bluish-green patina. Meanwhile, a single replacement reaction between iron and verdigris takes place so that Verdigris on the outside is replaced back to copper but the iron support is oxidized and rusted. As a result of this reaction, approximately 1800 iron
To find chemical equilibrium, the following chemical equation is used in the experiment: Fe3+(aq) + SCN-(aq) FeSCN2+(aq). When iron (III) and thiocyanate react, thiocyanoiron (III) is produced. When the concentration of all ions at equilibrium are known, the equilibrium constant can be calculated by dividing the equilibrium concentration of the reactant by the equilibrium concentration of the products. In this experiment, four equilibrium systems containing different concentrations of three different ion types (Fe(NO3)3, KSCN-, and distilled water) are made and used to determine equilibrium concentrations. The equilibrium concentrations are used to calculate the concentration that all of the components of the chemical equation are at equilibrium. Using a colorimeter or spectrometer to determine the equilibrium concentration of FeSCN2+(aq) and
The percent recovery of the copper was calculated using the equation, percent recovery = (the mass of the copper recovered after all the chemical reactions/the initial mass of the copper) x 100. The amount of copper that was recovered was 0.32 grams and the initial mass of the copper was 0.46 grams. Using the equation, (0.32 grams/0.46 grams) x 100 equaled 69.56%. The amount of copper recovered was slightly over two-thirds of the initial amount.
The purpose of the experiment was to use two methods to find the presence of cations in an unknown solution using qualitative analysis. Qualitative analysis was used to identify a substance, not measure its amount. The first method used multiple solutions such as HCl, HNO3, H2SO4, NH4OH, acetic acid, K2CrO4, and K2C2O4 to conduct two tests. The first tested the presence of either Lead (Pb2+) or Silver (Ag+) while the second tested the presence of Calcium (Ca2+) or Barium (Ba2+). The second method used flames to burn metal ions in solution and observe the colors shown to identify the ion present in solution.
The objectives of this experiment were to use knowledge of chemical formulas and chemical nomenclature to experimentally determine the empirical formula of copper chloride. Common laboratory techniques were used to conduct a reaction between copper chloride and solid aluminum in order to get rid of the water of hydration. The amount of water of hydration in the sample of copper chloride hydrate was calculated by measuring the mass before and after heating the sample. Afterwards, an oxidation-reduction reaction was conducted, resulting in elemental copper. Using the Law of Definite Proportions, the mass of this product was used to determine the number of moles of copper and chlorine in the sample, which led to being able to determine the
The purpose of this lab is to identify the seven numbered solutions through chemical reactions. It was done by mixing the numbered solutions of known names but unknown number of distribution with each other and analyzing the chemical reactions.
Chemistry is one thing that makes us understand and gives us reasons of why certain reactions gives certain results. In this experiment we will be illustrating the reaction between baking powder and vinegar and see what happens to the balloon that is attached to it. Hypothetically the reaction of the vinegar and baking powder will produce carbon dioxide which will inflate the balloon. If the more vinegar may happen that when more vinegar is added to the baking powder it may produce more carbon dioxide thus the balloons diameter increases. This reaction is an acid base reaction thus results expected to show some carbon dioxide.
For high school, I chose to go to STEAM Academy. Since the first letter of STEAM is meant to represent “Science”, you would expect that I would have quite some knowledge on the subject. However, that is not the case. During my four years at STEAM, the science classes that I took included integrated science, biology, chemistry, microbiology, and psychology. For someone who does not know a lot about STEAM, that sounds like a typical amount of science courses and that someone who has taken this many science courses should have a pretty fair, basic understanding of the sciences. For someone who does know a lot about STEAM, they would know that I was in the inaugural class, meaning that each time I took a course, it was the first time that it had been offered by my school and that I was a true guinea pig for each of these courses. Because of my choice to go to STEAM Academy, I have little to no experience with chemistry.
The goal of the experiment is to examine how the rate of reaction between Hydrochloric acid and Sodium thiosulphate is affected by altering the concentrations. The concentration of Sodium thiosulfate will be altered by adding deionised water and decreasing the amount of Sodium thiosulphate. Once the Sodium thiosulphate has been tested several times. The effect of concentration on the rate of reaction can be examined in this experiment.