N-(1-Carboxymethyl-1H-tetrazol-5-yl)-hydrazinium nitrate (3). A solution of AgNO3 (0.10 g, 0.60 mmol) in distilled water (1.5 mL) was added dropwise in the dark to the solution of compound 2 (0.10 g, 0.60 mmol) in Deionized water (1.5 mL) under stirring. After 2-3 hour, the precipitate was filtered, and rinsed with 4 mL distilled water. The solvent was removed by rotary Evaporation to produce a white solid at 88% yield (0.10 g); N-(1-Carboxymethyl-1H-tetrazol-5-yl)-hydrazinium nitrate: Yield: 88%; yellow crystals;. IR (KBr): 3396, 3329, 3140, 3008, 1628, 1494, 1383 cm-1; UV (H2O): λmax = 293-296
Figure 1 shows the synthesized ionic liquid of CVD with studied acidic compounds (white crystalline materials) in 1:1 molar ratio after dissolving them in methanol and complete solvent evaporation after five days. CVD with CA, TA and SAC convert to a viscous yellow liquid form. This method was used to preparation of different ionic liquid form of drugs such as ketoconazole with TA and CA (24) and sulfasalazine and acyclovir with choline (28). ****Fig 1**** The DSC thermograms of CVD, CA, TA and their ionic liquid forms have been demonstrated in Figure 2.
2.3. Synthesis of 2-(2-(Morpholinomethyl)-1H-benzimidazol-1-yl)acetohydrazide (4) To a solution of compound 3 (0.01 M, 2.89 g) in methanol (60 mL), 99% hydrazine hydrate (1 mL) was added and the mixture was refluxed for 6 h. The reaction mixture was cooled and the solid thus obtained was filtered, washed with cold water and recrystallized with ethanol to obtain the compound 4. 2.4.
2. FORMATION OF HYDRAZONE FROM ESTER Materials required: * The ester which was synthesized in the previous reaction. The total weight of ester obtained was 230mg. * Methanol – 20 ml
A spin vane was added and a water-jacked condenser was attached. Isopentyl nitrite (0.06ml, 0.045 mmol) was dissolved in 1,2-dimethoxyethane (0.50 ml) in a 3-ml conical vial and caped to prevent loss by evaporation. Running the reaction. The mixture in the 5-ml conical vial containing the tetraphenylcyclopentadienone and anthranilic acid was heated on an aluminum block to 140° C. Once the mixture started to boil the prepared mixture of isopentyl nitrite was added to the 5-ml conical vial through the top of the condenser using a pasture pipette.
In this experiment, racemic 2-methylcyclohexanone was reduced using sodium borohydride as a nucleophile to give a diastereomeric mixture of cis and trans secondary alcohols. The products were analyzed for purity using IR spectroscopy and gas chromatography. 1.2 g of 2-methylcyclohexanone and 10 mL of methanol were combined in a flask and cooled in an ice bath. Two 100 mg portions of sodium borohydride were added to the flask and stirred. 5 mL of 3M sodium hydroxide, 5 mL of de-ionized water, and 15 mL of hexane were added to the reaction flask and stirred.
Using filtration sodium acetate was separated, and the filtrate was evaporated to obtain syrup and fractionated at a boiling point of 133-136 °C. The obtained product dissolved in hydrogen bromide of glacial acetic acid and this mixture reaction kept in an ice bath for 1hr. According to procedure, the product was methylated to obtain 1bromo-2, 3, 4, 6-tetramethylglucose.
5.0grams of benzoic acid Molar mass of benzoic acid: 122.12g/ml 5.0g122.12g=0.041moles 19.75grams of
2.9. Estimation of Hydrogen peroxide (H2O2) 10 213 The concentration of H2O2 was determined by the method of Okuda et al (38). Fresh leaf 214 sample (0.5 g) was grounded in ice-cold 200 mM HClO4 and was then centrifuged at 215 1200 g for 10 min followed by neutralization of HClO4 of the supernatant with 4M KOH. 216 The insoluble KClO4 was eliminated by further centrifugation at 500g for 3 min.
Abstract In this experiment, the reaction kinetics of the hydrolysis of t-butyl chloride, (CH3)3CCl, was studied. The experiment was to determine the rate constant of the reaction, as well as the effects of solvent composition on the rate of reaction. A 50/50 V/V isopropanol/water solvent mixture was prepared and 1cm3 of (CH3)3CCl was added. At specific instances, aliquots of the reaction mixture were withdrawn and quenched with acetone.
The objective of this experiment was to use an aldol condensation reaction to synthesize 3-nitrochalcone from 3- nitrobenzaldehyde. This was accomplished with a Diels-Alder reaction that utilized 3-nitrobenzaldehyde, acetophenone, ethanol, and sodium hydroxide. The mechanism for the synthesis of 3-nitrochalcone is presented in Figures 1 and 2. The alpha carbon on the acetophenone is deprotonated. This is followed by the attack of the alpha carbon anion on the carbonyl carbon on the 3-nitrobenzaldehyde.
1. In part A. organic compounds benzophenone was mixed with water after 60 seconds it was determined the compound was insoluble in water. Similarly, to water it was found that hexane which in non polar was semi soluble. The only soluble solvent was methyl alcohol which was detected after 20 seconds.
The silver ion TLC was prepared through the following procedure: Silver nitrate was dissolved in 10 ml of distilled water. This aqueous solution of silver nitrate was absolutely mixed with 9 g of silica gel (10 ~ 40 μm particles). Then, a 10 × 5 cm TLC plate was coated with the above slurry and activated for 1 h at 90 °C before use. They were immediately transferred into a desiccator in dark for storage after cooling. 32 100 μL of afore-prepared sample solution and the mixed reference standard were diluted 100 times with ethyl acetate.