In each of the experimentations I studied, I have determined how the temperature of the water alters the speed of the Alka-Seltzer tablets being disintegrated. I have selected to differentiate on these two specific components because I wanted to collate and evaluate the number of carbon dioxide being created from the two dissimilar water temperatures. 3. The other key essentials I needed in order to control my experimentations were how much time it took, the quantity of water being utilized, and the temperature of the water. I have controlled both of these key essentials by utilizing a timer, a graduated cylinder, and a thermometer.
As we shook the first cube for 3 minutes, the mass decreased from 2.35g to 1.42g. During test 2, we shook and received a 1.64g, after the starting total of 4.7g. For the final mass we got 1.99g, a total of 5.06g grams turned into sugar dust. Our graph was almost a straight line. On trial 1, i believe we didn 't shake it as hard as we did of
The control in the experiment is water. Units used while timing the productivity of gas from an Alka-Seltzer tablet in different temperatures is, seconds. In order to find out if temperature controls the rate of chemical reaction, whether hot water is a more effective way to make the gas produce at a faster speed, it would be necessary to compare the results of different temperatures at the end of each trial. In order to do this the scientists will measure the volume of gas that is produced within a 10 second interval time after the tablet begins to react.
Everyday Use and Sula are coming of age stories. They both illustrate times in people’s lives when they have to decide to how they are going to live with their past and themselves. The short story "Everyday Use", Alice Walker emphasizes the aspect of individuality. The story focuses on the lives of two sisters, Maggie and Dee.
Firstly, because the NaHCO3 compound was not stored in a sealed container, therefore dust particles could have changed the results, and making the product impure. Also, there are uncertainties associated with the instruments used in this experiment. This, if the products were measured slightly more than should be, this could have affected the concentrations of the solutions, and therefore causing a larger
Uncontrolled Environmental conditions Atmospheric conditions The controlled variable Concentration of amylase was kept under control by measuring the amount of amylase used and also it was made sure the percentage of amylase used was 1%. The Amount of amylase/starch used were kept to 5cm3 at all times. Materials needed Beakers Bunsen burner Test tube Thermometer Stopwatch Test plate Glass rod Starch Amylase solution Water bath Iodine solution. Test tube holder Labels Marker Procedure First 5 test tubes were taken and labeled with numbers from 1 to
In this lab we used two processes called Diffusion and Osmosis. Diffusion is the movement of molecules from areas of high concentration to areas of low concentration. Diffusion is a process that requires no energy and involves smaller non-polar molecules. In Figure 1 you can see the molecules spreading throughout the glass from the area of high concentration, so that the areas with low concentration are filled evenly as well. The other process was osmosis.
In this practical agar jelly cubes will be used to represent a cell. AIM: To model diffusion in a practical form and investigate the effect of surface area to volume ratio. HYPOTHESIS: It is hypothesised the smaller the cube the quicker and bigger the rate of diffusion will be and with a larger cube there will be a smaller percentage of diffusion due to its bigger volume.
Additionally, it was difficult obtaining a piece of rhubarb that was thin and particularly red, therefore the effect could not be best observed in the cells. Part B: Design your own experiment Parts of this practical were taken and slightly altered from the following link http://www.markedbyteachers.com/gcse/science/investigate-the-effect-of-surface-area-on-osmosis-in-potato-tissue.html Aim: To observe the effect different surface area: volume ratios have on osmosis in potato tissue. Hypothesis: If the potato has a larger surface area: volume ratio, the quicker osmosis will take place and the larger the mass will be at the end of the experiment, therefore the difference in mass of the potatoes from the start of the experiment to the end of the experiment will be larger. Additionally, the potato pieces left in a saltwater solution will decrease in mass, whereas the pieces left in water will increase in mass.
Introduction The goal of the experiment is to examine how the rate of reaction between Hydrochloric acid and Sodium thiosulphate is affected by altering the concentrations. The concentration of Sodium thiosulfate will be altered by adding deionised water and decreasing the amount of Sodium thiosulphate. Once the Sodium thiosulphate has been tested several times. The effect of concentration on the rate of reaction can be examined in this experiment.
Also, although this likely served no contribution in disheveling the results, using a stirrer of the same material to ensure the separate testing of each substance will be as uniform as
Chemistry IA Background information: Introduction: Electrolysis it’s a chemical process that when you pass an electric current into a solution or a liquid that contains ions to separate substances back to their original form. The main components that are required for electrolysis to take a place are: Electrolyte: it’s a substance that when dissolved in water it ionize and then it will contain free moving ions and without these moving ions the process of electrolysis won’t take place. Direct current (DC): This current provides the energy needed to discharge the ions in the electrolyte Electrodes: it’s an object that conducts electricity and it’s used in electrolysis as a bridge between the solution and power supply. A great example
That caused a new initial reading of NaOH on the burette (see Table1 & 2). The drops were caused because the burette was not tightened enough at the bottom to avoid it from being hard to release the basic solution for titrating the acid. The volume of the acid used for each titration was 25ml. The volume of the solution was then calculated by subtracting the initial volume from the final volume. We then calculated the average volume at each temperature.
Aim: To find out the relationship between the greater concentration of sodium thiosulfate when mixed with hydrochloric acid and the time it takes for the reaction (the time it takes for the solution to turn cloudy) to take place and to show the effect on the rate of reaction when the concentration of one of the reactants change. Introduction: The theory of this experiment is that sodium thiosulfate and hydrochloric acid reach together to produce sulfur as one of its products. Sulfur is a yellow precipitate so, the solution will turn to yellow color while the reaction is occurring and it will continue until it will slowly turn completely opaque. The reaction of the experiment happens with this formula: “Na2 S2 O3 + HCL =
For this lab I will be using water and sucrose to demonstrate the rate of osmosis. In this lab I will be exploring how temperature impacts the rate of osmosis by placing pieces of potato of equal size in solutions of different temperatures and observing the change in mass of potato after a given period of time. The change in mass will indicate the rate of osmosis.