In this lab, the oxidation of a secondary alcohol was performed and analyzed. An environmentally friendly reagent, sodium hypochlorite, was used to oxidize the alcohol, and an IR spectrum was obtained in order to identify the starting compound and final product. The starting compound could have been one of four alcohols, cyclopentanol, cyclohexanol, 3-heptanol, or 2-heptanol. Since these were the only four initial compounds, the ketone obtained at the end of the experiment could only be one of four products, cyclopentanone, cyclohexanone, 3-heptanone, or 2-heptanone. In order to retrieve one of these ketones, first 1.75g of unknown D was obtained. 1mL of Acetic acid was then added to Unknown D and the solution was stirred. Next, 15mL of sodium
Based on the obtained results from the experiment, the unknown liquid was determined to be methanol. The results were very close to the theoretical values, all within 15.92 % error. In this experiment it showed that the methanol have different intermolecular forces at work and at different vapor pressures implying that the amount of intermolecular forces they exhibit affects the vapor pressure. Possible source of error that occurred throughout the experiment was that the temperature was hard to control leading to the variances between the temperature of the reading in the water bath and the actual temperature causing slight changes in the vapor
In this experiment, the percent yield was 90%. This number implies that there was little error in this experiment. However, this result could have been caused by certain external factors. Firstly, because the NaHCO3 compound was not stored in a sealed container, therefore dust particles could have changed the results, and making the product impure. Also, there are uncertainties associated with the instruments used in this experiment. This, if the products were measured slightly more than should be, this could have affected the concentrations of the solutions, and therefore causing a larger
The identity of the product and unknown were 4-tert-butylbenzyl phenol ether and tert-butyl phenol respectively. The key to making this discovery was the melting point and TLC results! The substitution reaction was successful but not fully effective.
Reason: Six histadine amino acids at the end of the protein can bind to nickel very tightly. Nickel can bind to agarose bead very tightly. Use this strong affinity column we can isolate our protein, which has seven histadine amino acids.
Abstract – Methyl trans-cinnamate is an ester that contributes to the aroma of strawberry. It can be synthesized by an acid-catalyzed Fischer esterification of a methanol and trans-cinnamic acid under reflux. The solution was extracted to obtain the organic product, and evaporated residual solvent The yield was 68%, but there is some conflicting data regarding the purity. The melting point, IR, GC-MS indicate a highly pure desired product whereas 1H NMR shows there are unreacted reagents still present.
After adding the acetic acid and hydrobromic acid to the solution, and heating and recrystallizing the solution, the product triphenylmethyl bromide was created and had a mass of 0.103 g. The theoretical yield was calculated by determining the limiting reagent in the reaction. The triphenylmethanol was the limiting reagent in the reaction. The total amount of mass from the triphenylmethanol was converted to moles by using the molar mass of the triphenylmethanol. The amount of moles was then converted into grams to determine the theoretical yield, 0.125 g. The percent yield was then calculated by dividing the actual yield by the theoretical yield and multiplying the result by 100%. The percent yield was 82.4%. The melting point of the product was observed to be 139.5 °C. The theoretical yield of the product is 152 °C (University of South Carolina Department of Chemistry and Biochemistry). The melting point percent difference was calculated by subtracting the theoretical melting point from the actual melting point, dividing the result by the theoretical melting point, and multiplying the result by 100%. The melting point difference was 8.22%. Example calculations are shown
The objective of this experiment was to use an aldol condensation reaction to synthesize 3-nitrochalcone from 3- nitrobenzaldehyde. This was accomplished with a Diels-Alder reaction that utilized 3-nitrobenzaldehyde, acetophenone, ethanol, and sodium hydroxide.
The purpose of this experiment is to undergo bromination reaction of acetanilide and aniline to form 4-bromoacetanilide and 2,4,6-tribromoaniline respectively. Since -NHCOCH3 of acetanilide and -NH2 of aniline are electron donating groups, they are ortho/para directors due to resonance stabilized structure. Even though the electron donating groups activate the benzene ring, their reactivities are different and result in the formation of different products during bromination. In acetanilide, the lone pair of the nitrogen is delocalized into the
In the round-bottom flask (100 mL), we placed p-aminobenzoic acid (1.2 g) and ethanol (12 mL). We swirled the mixture until the solid dissolved completely. We used Pasteur pipet to add concentrated sulfuric acid (1.0 mL) to the flask. We added boiling stone and assembled the reflux. Then, we did reflux for 75 minutes. After reflux, we removed the reaction mixture from the apparatus and cooled it for several minutes. We transferred the mixture to the beaker that contained water (30 mL). We cooled the mixture to room temperature and added sodium carbonate to neutralize the mixture. We added sodium carbonate until the pH of the mixture was 8. After neutralize, we collected benzocaine by vacuum filtration. We used a Buchner funnel to collect benzocaine. We used three 10 ml of water to wash the product. After the product was dry, we weighed, calculate the percent yield and determined the melting point of the product.
To find if it is a pure substance we see if there is a change in melting point.
This shows that some impurities are present in the final product. Similarly, the experimental percent yield of 120.2% shows that some issues arose during the procedure. It is impossible to produce a pure product with over 100% yield; therefore, other impurities were present in the product that added weight to the finial mass. This extra weight pushed the yield well over 100%. This source of error could be due to a lack of drying the final product. Since a large amount of water was used to was the solution until a neutral pH was reached, some water was retained in the solid. This leftover moisture could have caused an increase in mass; therefore, the solid should have been dried longer to allow more water to evaporate. Another possible error could be the presence of Cannizzaro products. However, this is unlikely because of the absence of any white
Titration process is used in an acid-base experiment in order to determine the concentrations of solutions of acids and bases. Through the titration process, we are able to identify physical changes to the mixture such as the colour change to indicate the end point of the experiment. For example, the colour changes of phenolphthalein from colourless to pink and methyl orange from red to orange and subsequently yellow. Acids produce hydrogen ions and bases produce hydroxide ions. This causes the indicator to change colour due to the colour difference from the undissociate molecules.
In this experiment, acetanilide was synthesized via nucleophilic acyl substitution from both acetic anhydride and aniline. During this reaction, aniline acts as the nucleophile and acyl (CH3CO-) group from acetic anhydride acts as the electrophile. The hydrogen atom of –NH2 group is replaced by the acyl group. The crude product contained acetanilide, and acetic acid, which was the impurity. Recrystallization, which was used to purify the contaminated acetanilide, required a suitable hot solvent which dissolved all the crude product, but upon being cooled, since
The unknown concentration of benzoic acid used when titrated with standardized 0.1031M NaOH and the solubility was calculated at two different temperatures (20◦C and 30◦C). With the aid of the Van’t Hoff equation, the enthalpy of solution of benzoic acid at those temperatures was determined as 10.82 KJ. This compares well with the value of 10.27KJ found in the literature.