We found that unknown 6 was Isopropyl alcohol. Its chemical name is isopropanol and the chemical formula C₃H₈O but is typically called isopropyl alcohol. Isopropyl alcohol is today used as a primary ingredient in rubbing alcohol. Is smells very unpleasant and is used for disinfecting pads used by medical professionals for tasks such as sanitizing small instruments, wiping down surfaces, and cleaning a patient’s skin before an injection. Since it is also a solvent, it has many cleaning uses. We predicted at once that is could be isopropanol because of its smell.
In the first part of the experiment, Part A, the standard solutions were prepared. As a whole, the experiment was conducted by four people, however, for Part A, the group was split in two to prepare the two different solutions. Calibrations curves were created for the standard solutions of both Red 40 and Blue 1. Each solution was treated with a serial 2-fold dilution to gain different concentrations of each solution.
In nucleophilic substitution reactions, there are two possibilities, either Sn1 or Sn2. In this particular experiment, an Sn2 reaction
The purpose of this experiment was to make ethanol from sucrose through a fermentation reaction.
First, two grams on an unknown white compound were given. The possible compounds the known could be were CaCO3, KNO3, NH4Cl, CaCl2, K2SO4, (NH4)2SO2, Ca(NO3)2, NaC2H2O2, K2CO3, MgCl2, Na2CO3, 0.1 M AgNO3, MgSO4, NaCl, 0.2 M BaCl2, KCl, NaSO4, Mg(s), HCl, HNO3, NaOH, HC2H3O2, H2SO4, and KOH.
First, the 250-mL graduated cylinder, 100-mL graduated cylinder, and the 10-mL graduated cylinder were observed to see the volume of the liquid in each one. Then, one digit further was estimated, and the results were recorded. After that, the 25-mL graduated cylinder and the 50-mL beaker were cleaned and dried. Next, their masses were measured on the scale, and the results were rounded to the nearest thousands decimal place. Subsequently, the Erlenmeyer flask was filled with 100 mL of distilled water. Using the thermometer, the temperature was measured and recorded. Then, the 25-mL graduated cylinder was filled with 25 mL of distilled water, and its mass was measured and recorded. The density of the water was found using the temperature and the Density of water index. Moreover, the calculated volume of water was calculated using the formula of density, and the difference between observed volume and calculated volume was found. This process was then repeated using the 50-mL beaker and the results were recorded.
The process of recrystallization is an important method of purifying a solid organic substance using a hot solution as a solvent. This method will allow the separation of impurities. We will analyze Benzoic Acid as it is dissolved and recrystallized in water and in a solvent of Methanol and water.
A boiling point of a substance is dependent on the temperature at which the substance can change its matter, such as liquid to gas. The molecules present in liquid are tightly compressed together, though they are still moving and colliding. If the liquid is heated, there is a rise in temperature which generates vibrations throughout the liquid, resulting in more collisions between molecules (Helmenstine, 2017). Once the collisions between the molecules become quite intense and rapid, boiling starts to take place. There are molecules that are so powerful, they break through the attraction forces that keep the molecules together, this is called intermolecular forces (Ophardt, 2013). Breslyn (2016) explained that boiling point is when vapor pressure of a substance such as liquid is equal to the atmospheric pressure. Atmospheric pressure relates to the space of pressure above the liquid, whereas vapor pressure is defined as pressure that is created by the molecules changing from liquid to gas form, when these molecules change to gas they collide with air molecules.
The aim of this week lab experiment is to experiment distill crude oil and to check how temperature determine the chemical properties of crude oil plus how the boiling point can also show physical properties. They are two major finding in this experiment. he first finding was the point at which the raw petroleum is heated to the point of boiling, at 275 0C, the gas and kerosene oil are refined, however the oil (lubricant ) stays as an unrefined feature oil. Another finding was that the oil at the gasoline stage was brown pinkish and for kerosene it became a grey.
Abstract — This experiment was conducted to familiarize the students with the procedures regarding distillation—to be more precise, the separation of ethanol from an alcoholic beverage—using a distillation set-up consisting of boiling chips, a Bunsen burner, a condenser, a thermometer and several other materials. In the end, it was discovered that one may actually separate a homogeneous mixture, given that the components of said mixture differ in volatility and that they utilize a complete distillation set-up and follow laboratory safety rules and regulations.
The fractions in the fractional distillation such as N-hexane, isohexane, methyl cyclopentane have normal boiling point close to cyclohexane which makes the recovery of cyclohexane uneconomic and difficult.
Two sources of error may have affected the experiment. Firstly, the experiment required volumes of liquid to be recorded while the vapours were distilling. It was impossible to accurately measure the volume of liquid at any given moment, as the meniscus was moving side to side. Secondly, the distillation was ended while there was still liquid in to round bottom flask. The composition and volume of this liquid were unaccounted for in the calculated
The GC ethanol analysis method described above has a simple concept, its rapid, and extremely accurate, determining ethanol precisely without interference from other beverage components. With this method, it takes only 7 to 8 min to complete a sample analysis for the determination of ethanol content in a beverage sample. Analyst handling is minimized to prevent deviation in results or possible human error. This method requires a gas chromatograph and a digital integrator, both reasonably expensive and sophisticated pieces of equipment.
A gas chromatograph (GC) can be utilized to analyze the contents of a sample quantitatively or in certain circumstances also qualitatively. In the case of preparative chromatography, a pure compound can be extracted from a mixture. The principle of gas chromatography can be explained as following: A micro syringe is used to inject a known volume of vaporous or liquid analyte into the head or entrance of a column whereby a stream of an inert gas acts a carrier (mobile phase). The column acts as a separator of individual or chemically similar components. A column is typically packed with a stationary non-volatile matter (stationary phase). The separation occurs due to different interactions of each component with the stationary phase.
Fractional distillation is a method of separating miscible liquids using heat. This technique is used for the separation of liquids which dissolve in each other. Several simple distillations are completed during fractional distillation using only one apparatus. During the process a mixture is separated into several parts called fractions. Mixtures contain different substance with different boiling points, the differences in boiling points is the main reason fractional distillation is effective. The temperature at which a phase change occurs from liquid to vapor is the boiling point.