Discussion/Conclusion: The question of the experiment was the effects of concentration, temperature, pH lever, and inhibitors of enzymes that increase the rate of a chemical reaction without making a change itself in living cells. In the experiments, peroxide was used as the enzyme. The hypotheses were: 1. Concentration of the extract would directly affect enzyme activity.
Further experimentation with multiple trials could strengthen these results. Although some errors were made with the mineral solution from the filtration process, the percent error calculated for the mineral was partially accurate. The theoretical value of Cu2+was calculated to be 57.48%, while the experimental value was 50.6%. The percent error was was not below 5 percent, but it was below 20 percent, which is fairly good. This result supports that the methods used during this experiment are sound.
ABSTRACT: The purpose of the experiments for week 5 and week 6 support each other in the further understanding of enzyme reactions. During week 5, the effects of a substrate and enzyme concentration on enzyme reaction rate was observed. Week 6, the effects of temperature and inhibitor on a reaction rate were monitored. For testing the effects of concentrations, we needed to use the table that was used in week 3, Cells.
LABORATORY REPORT Activity: Enzyme Activity Name: Natalie Banc Instructor: Elizabeth Kraske Date: 09.26.2016 Predictions 1. Sucrase will have the greatest activity at pH 6 2. Sucrase will have the greatest activity at 50 °C (122 °F) 3.
5 water bath were set up each to10 °C. (5 were used do the experiment faster) 5 cm3 of starch solution were added into the 5 test tubes that were labeled test tubes. Then 5 cm3 of amylase enzyme was added into the other 5 test tubes that were labeled. Put one of the starch solution test tube (preferably the one labeled 1) and one of the test tube containing amylase into the water bath (10 °C).
3mL of the liquid in each of the vials were added into cuvettes and measured in the spectrophotometer. Before each time point the photo spectrometer was zeroed using a cuvette with 3mL of distilled water. If any of the results were considered unusual the machine was zeroed again and the sample was retested. The results from the spectrophotometer test were recorded in a table. The experiment was repeated six times to gain a sample size of six.
LABORATORY REPORT Activity: Enzyme Activity Name: Natalie Banc Instructor: Elizabeth Kraske Date: 09.22.2016 Predictions 1. Sucrase will have the greatest activity at pH 6 2. Sucrase will have the greatest activity at 50 °C (122 °F) 3. Sucrase activity increases with increasing sucrose concentration Materials and Methods Effect of pH on Enzyme Activity 1. Dependent Variable amount of product (glucose and fructose) produced 2. Independent Variable pH 3. Controlled Variables temperature, amount of substrate (sucrose) present, sucrase + sucrose incubation time Effect of Temperature on Enzyme Activity 1. Dependent Variable amount of product (glucose and fructose) produced 2. Independent Variable temperature 3. Controlled Variables pH, amount of
Tyler White CHEM151LL 32658 04/01/2018 Different Types Chemical Reaction Types and Equations Purpose: The purpose of this lab experiment is to examine different types of chemical reactions such as Decomposition reaction, Synthesis reactions, Combustion reactions, and different Chemical equations. The experiments were conducted online using Late Nite Labs. Materials: Because the experiments were conducted online there wasn’t any physical use of materials, only digital ones, for these labs to be performed. Only the registration for the website was needed to perform these online labs, as well as a desktop computer.
The Another medium used was MAC, it is used to isolate and differentiate gram-negative organisms and it is a pink, dusty rose color. Lastly, the Citrate Slant is a green color and it was used as a differential test to examine enzymes. The media were inoculated at 37°C for 48 hours, then it was observed to determine the
These factors include the pH and the temperature of the solution (1). Most enzymes have a preferred temperature and pH range (2). The preferred temperature for catalase falls between the ranges of thirty five to fifty degrees Celsius (4). Temperatures that are too high denature the enzyme and halt the enzyme’s activity (2). Catalase denatures starts to denature at fifty five degrees Celsius (2).
Bio Chem lab Report 04 Enzyme Biochemistry Group Member: Chan Man Jeun Duncan (16002621) Law Sze Man (16000478) Introduction Enzyme is a protein base structure substance in our body. It works at a biocatalyst that will catalyzing the chemical reaction, which helps to speed up the chemical reaction. Enzyme could only function in specific shape, and the shape of enzyme is depending on the environment, therefore it is hard for an enzyme to function well in an extreme environment. The aim of this experiment is to see can the enzyme functions normally in different environment(pH, temperature and salt concentration) via using starch solution, amylase from saliva, 0.5M HCl solution, 0.5M NaOH solution and NaCl solution, and using iodine solution
⋅ 5H2O, which has about 36.0%, and CuCl2 ⋅5H20 (21.17%). Materials: Ring stand, ring clamp, evaporating dish, Bunsen burner, clay triangle, crucible tongs, electronic balance, sample of hydrated salt. Methods:
purpose the propose of this experiment was too see if the chemical reaction of a enzyme can be made faster. Hypothesis I think that a warm environment would be best to make an enzyme’s reaction faster. because a protein can move faster in heat.
Paragraph 1 The objective of the experiment is to test; how will water temperature affect the rate of reaction of an alka-seltzer tablet? The dependent variable of the experiment is the dissolving time. When an alka-seltzer tablet starts to fizz it begins to dissolve, due to the citric acid and sodium bicarbonate the tablet contains (Clark, “Why does Alka-Seltzer fizz?).
Introduction In class, a series of experiments were performed that pertained to the enzyme known as catalase, which converts hydrogen peroxide into oxygen. Due to peroxide being toxic to the tissues of both plants and animals, both possess the enzyme catalase, which breaks into two non-toxic compounds: water and oxygen gas. Enzymes are proteins that react to certain substrates to create a product, and continue doing so afterwards. Methods and Materials To test reactions between catalase and hydrogen peroxide, groups of three to four people were formed.