Verna Wang Hannah Palmer CHEM 101-069 Lab 11-19-16 Stoichiometry and Limiting Reagents Lab Report Purpose: We are using the reaction of sodium hydroxide and calcium chloride to illustrate stoichiometry by demonstrating proportions needed to cause a reaction to take place. Background: Just like a recipe would call for a specific amount of one ingredient to a specific amount of another, stoichiometry is the same exact method for calculating moles in a chemical reaction. Sometimes, we may not have enough of or too much of one ingredient , which would be defined as limiting and excess reagent, respectively. Ideally, every mole of each reagent would be used up, and theoretical yield, we are assuming that every last mole of the reactants would
TLC, NMR, and IR spectroscopy were used throughout the process to identify ferrocene and acetylferrocene in addition to evaluating the levels of purity. Evidence: The objective of our experiments was to prepare acetylferrocene from ferrocene. The overall reaction was carried out using 6.1 equivalents of liquid acetic anhydride to 1.8 equivalents of phosphoric acid and concluded with an aqueous workup with NaOH. The initial reaction mixture containing ferrocene, acetic anhydride, and phosphate acid was mixed on a hot stir plate. During this period, reflux was observed, and the mixture appeared dark brown in color.
In addition, phenolphthalein was added as an indicator. The aliquots were titrated against sodium hydroxide (NaOH) solution until end point was reached, after which volume of NaOH consumed was recorded. The value of the rate constant, k, obtained was 0.0002 s-1. The experiment was then repeated with 40/60 V/V isopropanol/water mixture and a larger value of k = 0.0007 s-1 was obtained. We concluded that the rate of hydrolysis of (CH3)3CCl is directly proportional to water content in the solvent mixture.
One of the reactions you observed resulted in this product: NaCl + H2O + CO2 (g)? What well did this reaction occur in? Describe how the observations for this reaction support your answer. B BoldI ItalicsU Underline Bulleted list Numbered list Superscript Subscript70 Words A reaction I observed in number 1.) Sodium Bicarbonate mixed with Hydrochloric acid.
In this experiment, 293 mg of aldehyde was weighted for method 1 instead of 250 mg and. Although .7906 mg of phosphonium salt was added, this probably was not enough to complete the reaction. The only significant change throughout method was 1 was that the yellowish mixture became slightly lighter. However, it was found that after vacuum filtration, there was some white and yellow
In the sodium iodide test, the alkyl halide is added to sodium iodide in acetone. In this test, primary halides precipitate the fastest while secondary halides need to be heated in order for a reaction to occur. Comparison of the rates of precipitation of the obtained product to standard 1° and 2° bromide solutions will show whether the product is a primary or secondary
TLC was used to identify the actual unknown product as well as other products/reactants present in the filtered solution. The procedure was conducted by placing a TLC plate in a developing chamber that is filled with a small amount of solvent. The solvent cannot be too polar because it will cause spotted compounds on the TLC plate to rise up too fast, while a very non-polar solvent will not allow the spots to move. The polarity of the spots also determines how far it moves on the plate; non-polar spots are higher than polar ones. After spots on the TLC form, the Rf values are calculated and used to analyze the similarity of the compounds.
Next, is the verification and determination of pure liquids. A clean and dry a 25mL graduated cylinder must be gathered from the lab cart, weigh the dry cylinder to the nearest mg and record the data. Add distilled water to the cylinder making sure the water level is at above the 20mL mark but below the 25mL mark. Determine and record the temperature of the water in the cylinder. Then, reweigh the cylinder to the nearest milligram.
Introduction: In this lab, of water in a hydrate, or a substance whose crystalline structure is bound to water molecules by weak bonds, is determined by heating up a small sample of it. By heating, the water of hydration, or bound water, is removed, leaving only what is called an anhydrous compound. Based on the percent water in the hydrate, it can be classified as one of three types: BaCl2O ⋅ 2H20, with a percent water of about 14.57%, CuSO4 ⋅ 5H2O, which has about 36.0%, and CuCl2 ⋅5H20 (21.17%). Materials: Ring stand, ring clamp, evaporating dish, Bunsen burner, clay triangle, crucible tongs, electronic balance, sample of hydrated salt. Methods: Weight a clean, dry, porcelain evaporating dish on the electric balance and record this mass on an appropriate data table.
The fastest pH was 6 (total:34.5), and it seems that there wasn’t a large change which resulted in a stable structure. The temperature in our experiment was not very high which didn’t result in denaturation of peroxidase. The temperature seemed to be a constant that didn’t affect the experiment. If the temperature was higher in pH 3 and low in pH 10, then it would cause pH 3 to denature even more which would make the pH 3 total about 4.0. Substrate concentration basically means the amount used for the substrate.